
A/UX® Command Reference
Sections lCM-Z) and 6

A/UX® Command Reference
Sections l(M-Z) and 6

030-0782

• APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc., and
UniSoft Corporation. All rights
reserved.

Portions of this document have been
previously copyrighted by AT&T
Information Systems and the Regents
of the University of California, and are
reproduced with permission. Under
the copyright laws, this manual may
not be copied, in whole or part,
without the written consent of Apple
or UniSoft. The same proprietary and
copyright notices must be affIxed to
any permitted copies as were affIXed to
the original. Under the law, copying
includes translating into another
language or format.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, AppleTalk,
AlUX, ImageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, Inc.

APDA, Finder, and QuickDraw are
trademarks of Apple Computer, Inc.

APS-5 is a trademark of Autologic.

B-NET is a registered trademark of
UniSoft Corporation.

DEC, VAX, VMS, and VT100 are
trademarks of Digital Equipment
Corporation.

030-0782

Diablo and Ethernet are registered
trademarks of Xerox Corporation.

Hewlett-Packard 2631 is a trademark of
Hewlett-Packard.

MacPaint is a registered trademark of
Claris Corporation.

POSTSCRIPT is a registered trademark,
and TRANSCRIPT is a trademark, of
Adobe Systems, Incorporated.

Teletype is a registered trademark of
AT&T.

TermiNet is a trademark of General
Electric.

UNIX is a registered trademark of
AT&T Information Systems.

Versatec is a trademark of Versatec.

Wang CIAIT is a trademark of Wang
Laboratories.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different, check with your
authorized Apple dealer.

AU IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILI1Y AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
TInS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO TInS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
"AS IS," AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
UABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF AIL OTHERS, ORAL
OR WRl1TEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
ex-ehr5i6llii1aY not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

030-0782

Contents

Preface

Introduction

Section 1

Section 6

Revision C

A1UX Command Reference

User Commands (M-Z)

Games

- v-

Preface

Conventions Used in This Manual
A/UX® manuals follow certain conventions regarding presentation of
information. Words or terms that require special emphasis appear in
specific fonts within the text of the manual. The following sections
explain the conventions used in this manual.

Significant fonts
Words that you see on the screen or that you must type exactly as
shown appear in Courier font. For example, when you begin an
A/UX work session, you see the following on the screen:

login:

The text shows login: in Courier typeface to indicate that it
appears on the screen. If the next step in the manual is

Enter start

start appears in Courier to indicate that you musttype in the
word. Words that you must replace with a value appropriate to a
particular set of circumstances appear in italics. Using the example just
described, if the next step in the manual is

login: username

you type in your name-Laura, for example- so the screen shows:

login: Laura

Key presses
Certain keys are identified with names on the keyboard. These modifier
and character keys perform functions, often in combination with other
keys. In the manuals, the names of these keys appear in the format of
an Initial Capital letter followed by SMALL CAPITAL letters.

The list that follows provides the most common keynames.

RETURN

OPTION

DELETE
CAPS LOCK

For example, if you enter

Revision C

- vii -

SHIFf
CONlROL

ESCAPE

Applee

instead of

Apple

you would position the cursor to the right of the word and press the
DELETE key once to erase the additional e.

For cases in which you use two or more keys together to perform a
specific function, the keynames are shown connected with hyphens.
For example, if you see

Press CONlROL-C

you must press CONfROL and C simultaneously (CONfROL-C normally
cancels the execution of the current command).

Terminology
In A/UX manuals, a certain term can represent a specific set of actions.
For example, the word Enter indicates that you type in an entry and
press the RETURN key. If you were to see

Enter the following command: whoami

you would type whoami and press the RETURN key. The system
would then respond by identifying your login name.

Here is a list of common terms and their corresponding actions.

Term

Enter

Press

Type

Click

Action

Type in the entry and press the RETURN key

Press a single letter or key without pressing the
RETURN key

Type in the letter or letters without pressing the
RETURN key

Press and then immediately release the mouse button

- viii -
RevisionC

Term
Select

Drag

Choose

Action
Position the pointer on an item and click the mouse
button

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse. Release
the mouse button when you reach the desired
position.

Activate a command title in the menu bar. While
holding down the mouse button, drag the pointer to a
command name in the menu and then release the
mouse button. An example is to drag the File menu
down until the command name Open appears
highlighted and then release the mouse button.

Syntax notation
A/UX commands follow a specific order of entry. A typical A/UX
command has this form:

command (flag-option] [argument] ...

The elements of a command have the following meanings.

Element

command

flag-option

argument

Revision C

Description

Is the command name.

Is one or more optional arguments that modify the
command. Most flag-options have the form

[-opt...]
where opt is a letter representing an option.
Commands can take one or more options.

Is a modification or specification of the command;
usually a filename or symbols representing one or
more filenames.

- ix -

Element Description

brackets ([]) Surround an optional item-that is, an item that you
do not need to include for the command to execute.

ellipses (...) Follow an argument that may be repeated any
number of times.

For example, the command to list the contents of a directory (Is) is
followed below by its possible flag options and the optional argument
names.

Is [-R] [-a] [-d] [-C] [-x] [-m] [-1] [-L]

[-n] [-0] [-g] [-r] [-t] [-u] [-c] [-p] [-F]

[-b] [-q] [-i] [-s] [names]

You can enter

Is -a /users

to list all entries of the directory /users, where

1 s Represents the command name
-a Indicates that all entries of the directory be listed
/ users Names which directory is to be listed

Com mand reference notation
Reference material is organized by section numbers. The standard
NUX cross-reference notation is

cmd(sect)

where cmd is the name of the command, file, or other facility; sect is
the section number where the entry resides.

D Commands followed by section numbers OM), (7), or (8) are listed
in A/UX System Adminstrator' s Reference.

D Commands followed by section numbers (1), (IC), (lG), (IN), and
(6) are listed in A/UX Command Reference.

D Commands followed by section numbers (2), (3), (4), and (5) are
listed in A/UX Programmer's Reference.

- x -
RevisionC

For example,

cat(l)

refers to the command cat, which is described in Section 1 of A/UX
Command Reference. References can also be called up on the screen.
The man command or the apropos command displays pages from
the reference manuals directly on the screen. For example, enter the
command

man cat

In this example, the manual page for the cat command including its
description, syntax, options, and other pertinent information appears on
the screen. To exit, continue pressing the space bar until you see a
command prompt, or press Q at any time to return immediately to your
command prompt. The manuals often refer to information discussed in
another guide in the suite. The fonnat for this type of cross reference is
"Chapter Title," Name of Guide. For a complete description of NUX
guides, see Road Map to A/UX Documentation. This guide contains
descriptions of each NUX guide, the part numbers, and the ordering
information for all the guides in the NUX documentation suite.

- xi -
Revision C

Introduction

to the A/UX Reference Manuals

1. How to use the reference manuals

AIUX Command Reference, AIUX Programmer's Reference, and AIUX
System Administrator's Reference are reference manuals for all the pro­
grams, utilities, and standard file formats included with your A/UX®
system.

The reference manuals constitute a compact encyclopedia of A/UX
information. They are not intended to be tutorials or learning guides.
If you are new to A/UX or are unfamiliar with a specific functional
area (such as the shells or the text formatting programs), you should
first read AIUX Essentials and the other A/UX user guides. After you
have started worked with NUX, the reference manuals help you under­
stand new features or refresh your memory about command features
you already know.

2. Information contained in the reference manuals

A/UX reference manuals are divided into three volumes:

• The two-part AIUX Command Reference contains information
for the general user. It describes commands you type at the
A/UX prompt that list your files, compile programs, format text,
change your shell, and so on. It also includes programs used in
scripts and command language procedures. The commands in
this manual generally reside in the directories /bin,
/usr/bin and /usr/ucb.

• The two-part AIUX Programmer's Reference contains informa­
tion for the programmer. It describes utilities for programming,
such as system calls, file formats of subroutines, and miscellane­
ous programming facilities.

• AIUX System Administrator's Reference contains information for
the system administrator. It describes commands you type at the
A/UX prompt to control your machine, such as accounting

Introduction
Revision C

1

commands, backing up your system, and charting your system's
activity. These commands generally reside in the directories
fete, /usr/ete,and /usr/lib.

These areas can overlap. For example, if you are the only person using
your machine, then you are both the general user and the system
administrator.

To help direct you to the correct manual, you may refer to AIUX Refer­
ence Summary and Index, which is a separate volume. This manual
summarizes information contained in the other A/UX reference manu­
als. The three parts of this manual are a classification of commands by
function, a listing of command synopses, and an index.

3. How the reference manuals are organized

All manual pages are grouped by section. The sections are grouped by
general function and are numbered according to standard conventions
as follows:

1 User commands

1M System maintenance commands

2 System calls

3 Subroutines

4 File formats

5 Miscellaneous facilities

6 Games

7 Drivers and interfaces for devices

8 A/UX Startup Shell commands

Manual pages are collated alphabetically by the primary name associ­
ated with each. For the individual sections, a table of contents is pro­
vided to show the sequence of manual pages. A notable exception to
the alphabetical sequence of manual pages is the first entry at the start
of each section. As a representative example, intro.1 appears at
the start of Section 1. These intro. section-number manual pages
are brought to the front of each section because they introduce the

2 A/UX Command Reference
RevisionC

other man pages in the same section, rather than describe a command
or similar provision of NUX.

Each of the reference manuals includes at least one complete section of
man pages. For example, the AIUX Command Reference contains sec­
tions I and 6. However, since Section I (User Commands) is so large,
this manual is divided into two volumes, the first containing Section I
commands that begin with letters A through L, and the second contain­
ing Section 6 commands and Section I commands that begin with
letters M through Z. The sections included in each volume are as fol­
lows.

AIUX Command Reference contains sections I and 6. Note that both of
these sections describe commands and programs available to the gen­
eral user .

• Section I-User Commands
The commands in Section I may also belong to a special
category. Where applicable, these categories are indicated by the
letter designation that follows the section number. For example,
the N in ypcat(lN) indicates networking as described follow­
ing.

IC Communications commands, such as cu and
tip.

IG Graphics commands, such as graph and
tplot.

IN Networking commands, such as those which help
support various networking subsystems, including
the Network File System (NFS), Remote Process
Control (RPC), and Internet subsystem .

• Section 6-User Commands
This section contains all the games, such as cribbage and
worms.

AIUX Programmer's Reference contains sections 2 through 5.

Introduction 3
Revision C

4

• Section 2-System Calls
This section describes the services provided by the NUX system
kernel, including the C language interface. It includes two spe­
cial categories. Where applicable, these categories are indicated
by the letter designation that follows the section number. For
example, the N in connect(2N) indicates networking as
described following.

2N Networking system calls

2P POSIX system calls

• Section 3-Subroutines
This section describes the available subroutines. The binary ver­
sions are in the system libraries in the /1 ib and / us r / 1 ib
directories. The section includes six special categories. Where
applicable, these categories are indicated by the letter designa­
tion that follows the section number. For example, the N in
mount(3N) indicates networking as described following.

3C C and assembler library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard I/O library routines

3X Miscellaneous routines

• Section 4-File Formats
This section describes the structure of some files, but does not
include files that are used by only one command (such as the
assembler's intermediate files). The C language struct
declarations corresponding to these formats are in the
/usr/include and /usr/include/sys directories.
There is one special category in this section. Where applicable,
these categories are indicated by the letter designation that fol­
lows the section number. For example, the N in
protocols(4N) indicates networking as described following.

A/UX Command Reference
RevisionC

4N Networking fonnats

• Section 5-Miscellaneous facilities
This section contains various character sets, macro packages, and
other miscellaneous formats. There are two special categories in
this section. Where applicable, these categories are indicated by
the letter designation that follows the section number. For exam­
ple, the P in tcp(lP) indicates a protocol as described follow­
ing. by the letter designation in parenthesis at the top of the
page:

5F Protocol families

5P Protocol descriptions

AIUX System Administrator's Reference contains sections 1M, 7 and 8.

• Section 1M-System Maintenance Commands
This section contains system maintenance programs such as
fsck and mkfs.

• Section 7-Drivers and Interfaces for Devices
This section discusses the drivers and interfaces through which
devices are normally accessed. While access to one or more disk
devices is fairly transparent when you are working with files, the
provision of device files permits you more explicit modes with
which to access particular disks or disk partitions, as well as
other types of devices such as tape drives and modems. For
example, a tape device may be accessed in automatic-rewind
mode through one or more of the device file names in the
/ dev / rmt directory (see tc(7)). The FILES sections of these
manual pages identify all the device files supplied with the sys­
tem as well as those that are automatically generated by certain
NUX configuration utilties. The names of the man pages gen­
erally refer to device names or device driver names, rather than
the names of the device files themselves.

• Section 8-A/UX Startup Shell Commands
This section describes the commands that are available from
within the NUX Startup Shell, including detailed descriptions of
those that contribute to the boot process and those that help with

Introduction 5
Revision C

the maintenance of file systems.

4. How a manual entry is organized
Each section of the reference volumes has an introductory man page,
such as intro(l), followed by the remaining man page entries
arranged alphabetically. Each entry is numbered separately (that is,
each entry begins on a page numbered" 1 ").

The entry name normally appears twice, once in each upper comer of a
page. Like dictionary guide words, these names appear at the top of
every physical page. After each name is the section number and, if
applicable) a category letter enclosed in parenthesis, such as (1) or
(2N).

Some entries describe several routines or commands. These multiple
subentries are listed under the main entry, and each subentry refers
back to the main entry. For example, chown and chgrp share a
page with the name chown(1) at the upper comers. If you tum to the
page chgrp(l), you find a reference to chown(1). (These cross­
reference pages are only included in A/UX Command Reference and
A/UX System Administrator's Reference.)

All of the entries have a common format, and may include any of the
following parts:

NAME
is the name or names and a brief description.

SYNOPSIS
describes the syntax for using the command or routine.

DESCRIPTION
discusses what the program does.

FLAG OPTIONS
discusses the flag options.

EXAMPLES
gives an example or examples of usage.

RETURN VALUE
describes the value returned by a function.

6 AlUX Command Reference
RevisionC

ERRORS
describes the possible error conditions.

FILES
lists the filenames that are used by the program.

SEE ALSO
provides pointers to related infonnation.

DIAGNOSTICS
discusses the diagnostic messages that may be produced. Self­
explanatory messages are not listed.

WARNINGS
points out potential pitfalls.

BUGS
gives known bugs and sometimes deficiencies. Occasionally, it
describes the suggested fix.

5. Locating information in the reference manuals

The directory for the reference manuals, A/UX Reference Summary and
Index, can help you locate infonnation through its index and sum­
maries. The tables of contents within each of the reference manuals
can be used also.

5.1 Table of contents

Each reference manual contains an overall table of contents and indivi­
dual section contents. The general table of contents lists the overall
contents of each volume. The more detailed section contents lists the
manual pages contained in each section and a brief description of their
function. Note that for the most part entries appear in alphabetic order
within each section.

5.2 Commands by function

This summary classifies the NUX user and administration commands
by the general, or most important function they perform. The complete
descriptions of these commands are found in A/UX Command Refer­
ence and A/UX System Administrator's Reference. Each is mentioned
just once in this listing.

Introduction 7
Revision C

The summary gives you a broader view of the commands that are avail­
able and the context in which they are most often used.

5.3 Command synopses

This section gives the syntax requirements of the commands in A/UX
Command Reference and A/UX System Administrator's Reference and
is provided as an even shorter reference to help you use commands you
are already familiar with.

5.4 Index

The index lists key terms associated with NUX subroutines and com­
mands. These key terms allow you to locate an entry when you don't
know the command or subroutine name.

The key terms were constructed by examining the meaning and usage
of the NUX manual pages. It is designed to be more discriminating
and easier to use than the traditional permuted index, which lists nearly
all words found in the manual page NAME sections.

The entries are alphabetized by key terms. Each entry consists of a key
term, in bold type at the left of the page, followed by a list of one or
more alphabetized command or subroutine references. For example, if
you wanted to know how to set tabs on your terminal, you might look
for the key term tabs. You would find the following entry:

tabs
expand(l) - expand tabs to spaces, and vice versa
tabs - set tabs on a terminal

The list of references contains two lines for command entries whose
NAME sections contain the word tabs; these are expand and tabs.
Both commands are in Section 1, which is in A/UX Command Refer­
ence. The command you want is tabs, which is in the second
volume, A/UX Command Reference.

5.5 Online documentation

Besides the paper documentation in the reference manuals, A/UX pro­
vides several ways to search and read the contents of each reference
from your NUX system.

8 NUX Command Reference
Revision C

To see a manual page displayed on your screen, enter the man(l)
command followed by the name of the entry you want to see. For
example,

man passwd

To see the description phrase from the NAME section of any manual
page, enter the whatis command followed by the name of the entry
you want to see. For example,

whatis apropos

To see a list of all manual pages whose descriptions contain a given
keyword or string, enter the apropos command followed by the
word or string. For example,

apropos remove

These online documentation commands are described more fully in the
manual pages man(l), whatis(l), and apropos(l) in A/UX Com­
mandReference.

Introduction 9
Revision C

Table of Contents

Section 1 : User Commands (M-Z)

m 4 (1) ... macro processor
m6 8k(1) ... see machid(l)
machid(l) provide truth value about processor type
macref(l) produce cross-reference listing of macro files
mactoiso(l) convert from Macintosh® encoding to International

Standards Organization (ISO) encoding
rna i 1 (1) ... send mail to users or read mail
mailx(l) interactive message processing system
make(l) maintain, update, and regenerate groups of files
rnakedev(l) prepare troff description files
makekey(l) ... generate encryption key
man(l) , display the named manual page entries
merge(l) ... three-way file merge
mesg(l) .. permit or deny messages
mk di r(1) ... make a directory
mkshlib(l) ... create shared library
mkstr(l) create an error message file by massaging C source
mm(l) format documents that contain moff and mm formatting requests mm

macros
mmt(l) ... typeset documents
more(1) show the contents of a file in display-size chunks
mt(l) ... magnetic tape manipulating program
mv(l) .. move or rename files
mvt(l) ... typeset view graphs and slides
ndx(l) create a subject-page index for a document
neqn(l) format mathematical text for nroff
netstat(lN) ... show network status
newform(1) ... change the format of a text file
newgrp(l) ... login to a new group
news(l) .. display local news items
nice(l) ... run a command at low priority
nl(l) .. line numbering filter
nm(l) display the symbol table of a common object file
nohup(l) run a command immune to hangups
nroff(l) .. text formatting language
nslookup(l) query name servers interactively

Section 1

od(l) convert binary data to a displayable fonn in octal, decimal,
hexadecimal, or ASCII

otroff(l) ... text fonnatting and typesetting
pack(l) .. compress and expand files
page(l) .. see more(l)
pagesize(l) ... display system page size
pas sWd(l) .. change login password
paste(l) merge lines of several files or subsequent lines of one file
pax(l) copy files to or from an archive in an IEEE fonnat
pcat(l) .. see pack(l)
pdpll(l) ... see machid(l)
pg(1) show the contents of a file in display-size chunks
pic(l) troff preprocessor for drawing pictures
pr(l) .. fonnat text for a print device
printenv(l) display the value of variables set in the current environment
prof(l) .. display profile data
prs(l) display information about an SCCS file
ps(l) .. report process status
psdit(l) convert troff intermediate formatto PosrScRIPf format
psroff(l) .. troff to a PosrSCRIPf printer
ptx(l) ... make permuted index
pWd(l) .. print working directory name
query(l) ... query the user for input
rep(lC) ... remote file copy
res(I) .. change RCS file attributes
resdiff(l) .. compare RCS revisions
resintro(1) introduction to RCS commands
resmerge(l) ... merge RCS revisions
revhex(l) receive and convert Motorola S-records from a port to a file
rdi st(l) ... remote file distribution program
red(l) ... see ed(l)
refer(l) find and insert literature references in documents
regcmp(l) ... regular expression compile
remlogin(IN) .. remote sign on
remsh(IN) ... remote shell
reset(l) .. see tset(l)
revel) reverse characters within each line of text
re z(1) ... compile resources
rIog(l) display log messages and other information about RCS files
rIogin(IN) .. remote login
rm(1) ... remove files or directories
rmail(l) .. see mail(l)
rmdel(l) ... remove a delta from an SCCS file

ii User Commands (M-Z)

rmdir(l) .. see rm(l)
roffbib(l) .. run off bibliographic database
rsh(l) ... see sh(l)
rup(lN) show status of machines on local network (RPC version)
rupt ime(1N) show host status of local machines
rusers(lN) give login list for local machines (RPC version)
rwho(lN) who's logged in on local machines?
saet(l) display who has checked an SCCS file out for editing.
sag(lG) ... system activity graph
sar(l) ... system activity reporter
sees(l) .. front end for the SCCS subsystem
seesdiff(l) compare two versions of an sces file
seript(l) start a shell that records terminal input and output
sdb(l) .. symbolic debugger
sdiff(l) ... side-by-side difference program
sed(l) ... stream editor
sette(l) set the type and creator of a Macintosh resource file
sh(l) .. run the Bourne shell, the earliest of the command interpreters available
shl(l) .. shell layer manager
size(l) display section sizes of common object files
sleep(l) .. suspend execution for an interval
sno(l) .. SNOBOL interpreter
soeIim(l) eliminate. so's from nroff input
sort(l) ... sort or merge files
sortbib(l) .. sort bibliographic database
spell(l) ... find spelling errors
speIIin(l) ... see spell(l)
spIine(lG) .. interpolate smooth curve
spli tel) .. split a file into pieces
ssp(l) ... make output single spaced
strings(l) find the printable strings in an object or other binary file
strip(l) strip symbol and line number information from an object file
stty(l) .. set the modes for a terminal
styIe(l) analyze surface characteristics of a document
su(l) .. substitute user ID
subj(l) generate a list of subjects from a document
sum(l) .. calculate a checksum
sumdir(l) sum and count characters in the files in the given directories
syne(l) ... update the superblock
sysIine(l) display system status on status line of a terminal
systemfolder(l) create a personal System Folder
tabs(l) .. set tabs on a terminal
tail(l) .. deliver the last part of a file

Section 1 iii

talk(1N) .. talk to another user
tar(l) .. copy files to or from a tar archive
tbl(l) .. format tables for nroff or troff
tc(l) interpret troff output for use at a vintage display device
tcb(l) .. block data to 8K for tc output
tee(l) .. pipe fitting
telnet(lC) user interface to the TELNET protocol
test(l) .. condition evaluation command
TextEdi tor(l) .. mouse-based text editor
t ft p(1 C) ... trivial file transfer program
time(l) ... time a command
t imex(1) time a command; report process data and system activity
tip(lC) .. connect to a remote system
t ou ch(1) update access and modification times of a file
tp(l) .. copy files to or from a tp archive
tplot(lG) interpret plotter instructions for use at a vintage display device
tput(1) .. query terminfo database
t r(1) .. translate characters
troff(l) ... text formatting and typesetting
true(l) ... provide truth values
t set(1) set or reset the terminal to a sensible state
t sort(l) ... topological sort
tty(l) ... get the terminal's name
u3b(1) .. see machid(l)
u3b15(1) ... see machid(l)
u3b2(1) see machid(l)
u3b5(1) ... see machid(l)
ucbdiff(l) differential file and directory comparator
ucbdiff3(1) 3-way differential file comparison
ul(l) filter special underlining sequences imbedded in text for use at a

display device
uname(l) display identification information about the current system
uncompact(l) .. see compact(1)
uncompress(l) .. see compress(1)
unexpand(1) ... see expand(1)
unget(l) undo a previous get of an SCCS file
uniq(l) ... report repeated lines in a file
uni ts(1) ... conversion program
unpack(l) ... see pack(l)
updater(l) update files between two machines
uptime(l) show how long system has been up
users(l) compact list of users who are on the system
uucp(1C) UNIX® system to UNIX system copy

iv User Commands (M-Z)

uudecode(lC) .. see uuencode(lC)
uuencode(lC) encode/decode a binary file for transmission via mail
uulog(lC) .. see uucp(1C)
uuname(1C) see uucp(lC)
uupick(lC) ... see uuto(lC)
uusend(lC) ... send a file to a remote host
uustat(lC) uucp status inquiry and job control
uuto(lC) public UNIX-to-UNIX system file copy
uux(lC) UNIX-to-UNIX system command execution
val(l) ... validate SCCS file
vax(l) .. see machid(l)
vc(l) ... version control
vedi t(1) .. see vi(1)
version(l) ... reports version number of files
vi(l) ... screen-oriented (visual) display editor
view(1) .. see vi(1)
w(l) .. who is on and what they are doing?
wc(l) ... word count
what(l) .. identify SCCS files
whatis(l) display a brief description for the named manual page entry
whereis(l) locate source, binary, and online help file for a command
which(1) display the directory path to a file by interpreting PATH and

alias settings
who(l) ... who is on the system?
whoami(l) .. print effective current user ID
write(l) ... write to another user
xargs(l) construct argument list and execute command
xstr(l) extract strings from C programs to implement shared strings
yacc(1) ... yet another compiler-compiler
yes(l) generate y entries in response to requests for input
ypcat(l) list the contents of the named YP map
ypmatch(l) list the value of keys in a YP map
yppasswd(l) change login password in yellow pages
ypwhich(1) which host is the YP server or map master?
zcat(1) ... see compress(l)

Section 1 v

m4(1) m4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [-Bint] [-e] [-Hint] [-s] [-Sint] [-Tint] [-Dname[=val]]
[-Uname] rJile ...]

DESCRIPTION
m4 is a macro processor intended as a front end for C and other
languages. Each of the argument files is processed in order. If
there are no files or if a filename is -, the standard input is read.
The processed text is written on the standard output.

FLAG OPTIONS
The flag options and their effects are as follows:

-Bint Change the size of the push-back and argument collection
buffers from the default of 4096.

-e Operate interactively. Interrupts are ignored and the output
is unbuffered.

-Hint Change the size of the symbol table hash array from the de­
fault of 199. The size should be prime.

-s Enable line sync output for the C preprocessor
(#line ...) .

-Sint Change the size of the call stack from the default of 100
slots. Macros take 3 slots"and nonmacro arguments take 1.

-Tint Change the size of the token buffer from the default of 512
bytes.

To be effective, the flag options noted above must appear before
any filenames and before any -D or -u flags:

-Dname [=val]
Define name to valor to null in the absense of val.

-Uname
Undefine name.

Macro calls have the form:

name(argl ,arg2, ... ,argn)

The right parenthesis, (, must immediately follow the name of the
macro. If the name of a defined macro is not followed by a (, it is
deemed to be a call of that macro with no arguments. Potential
macro names consist of alphabetic letters, digits, and underscore

February, 1990
Revision C

1

m4(1) m4(l)

L), where the first character is not a digit.

Leading unquoted blanks, tabs, and newlines are ignored while
collecting arguments. Left and right single quotes are used to
quote strings. The value of a quoted string is the string stripped of
the quotes.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. If fewer arguments are
supplied than are in the macro definition, the trailing arguments
are taken to be null. Macro evaluation proceeds normally during
the collection of the arguments, and any commas or right
parentheses that happen to turn up within the value of a nested call
are as effective as those in the original input text. After the argu­
ment collection, the value of the macro is pushed back onto the in­
put stream and rescanned.

Built-in Macros
m4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define Install the second argument as the value of the mac­
ro whose name is the first argument. Each oc­
currence of $n in the replacement text, where n is a
digit, is replaced by the nth argument. Argument 0
is the name of the macro; missing arguments are re­
placed by the null string; $# is replaced by the
number of arguments; $* is replaced by a list of all
the arguments separated by commas; $@ is like $*,
but each argument is quoted (with the current
quotes). .

undefine Remove the definition of the macro named in the ar­
gument.

defn Return the quoted definition of the argument(s).
This macros is useful for renaming macros, especial­
ly built-in macros.

pushdef Similar to define, but also save any previous
definition.

popdef Remove the current definition of the argument(s),
exposing the previous one, if any.

ifdef If the first argument is defined, install the second ar­
gument as its value; otherwise, install the third argu-

2 February, 1990
RevisionC

m4(1)

shift

m4(1)

ment If there is no third argument, the value is null.
The word unix is predefined on the UNIX® system
versions of m4.

Return all but the first argument. The other argu­
ments are quoted and pushed back with commas in
between. The quoting nullifies the effect of the ex­
tra scan that is subsequently performed.

changequote

changecom

Change quote symbols to the first and second argu­
ments. The symbols may be up to five characters
long. changequote without arguments restores
the original values, that is, " ".

Change left and right comment markers from the de­
fault * and newline. With no arguments, the com­
ment mechanism is effectively disabled. With one
argument, the left marker becomes the argument and
the right marker becomes newline. With two argu­
ments, both markers are affected. Comment mark­
ers may be up to five characters long.

di vert Change the current output stream to its (digit-string)
argument m4 maintains 10 output streams, num­
bered 0-9. The final output is the concatenation of
the streams in numerical order; initially stream 0 is
the current stream. Output diverted to a stream oth­
er than 0 through 9 is discarded.

undi ve rt Causes immediate output of text from diversions
named as arguments, or all diversions if there is no
argument Text may be un diverted into another
diversion. Undiverting discards the diverted text.

di vn urn Return the value of the current output stream.

dnl Read and discard characters up to and including the
next newline.

ifelse Has three or more arguments. If the first argument
is the same string as the second, then the value is the
third argument. If not, and if there are more than
four arguments, the process is repeated with argu­
ments 4, 5, 6, and 7. Otherwise, the value is either
the fourth string or, if it is not present, null.

February, 1990 3
Revision C

m4(1) m4(1)

4

incr Return the value of the argument incremented by 1.
The value of the argument is calculated by interpret­
ing an initial digit-string as a decimal number.

de c r Return the value of the argument decremented by 1.

eval Evaluate the argument as an arithmetic expression,
using 32-bit arithmetic. Operators include +, -, *, I,
%, A (exponentiation), bitwise &, I, A, and - as well
as relationals and parentheses. Octal and hexide­
cimal numbers may be specified as in C. The
second argument specifies the radix for the result;
the default is 10. The third argument may be used to
specify the minimum number of digits in the result.

len Return the number of characters in the argument.

index Return the position in the first argument where the
second argument begins (zero-origin), or -1 if the
second argument does not occur.

substr Return a substring of its first argument. The second
argument is a zero-origin number selecting the first
character; the third argument indicates the length of
the substring. A missing third argument is taken to
be large enough to extend to the end of the first
string.

transli t Transliterate the characters in the first argument
from the set given by the second argument to the set
given by the third. No abbreviations are permitted.

include Return the contents of the file named in the argu­
ment.

sinclude Same as include, except that nothing is returned
if the file is inaccessible.

syscmd Execute the system command given in the first argu­
ment. No value is returned.

sysval Is the return code from the last call to syscmd.

maketemp Fill in a string of xxxxx in the argument with the
current process ID.

m4exit Cause immediate exit from m4. Argument 1, if
given, is the exit code. The default is O.

February, 1990
RevisionC

m4(1) m4(1)

m4wrap Push back argument 1 at final EOF. An example is:
m4wrap ('cleanup () ,) .

errprint Print the argument on the diagnostic output file.

dumpdef Print current names and definitions for the named
items, or for all items if no arguments are given.

traceon With no arguments, turn on tracing for all macros,
including built-ins. Otherwise, tum on tracing for
named macros.

traceoff Turn off tracing globally and for any macros
specified. Macros specifically traced by traceon
can be un traced only by specific calls to
traceoff.

EXAMPLES
m4 filel file2 > outputfile

runs the m4 macro processor on the files filel and file2 and
redirects the output into outputfile.

FILES
/usr/bin/m4

SEE ALSO
cc(l), cpp(l).

"m4 Reference," in AIUX Programming Languages and Tools,
Volume 2.

February, 1990
Revision C

5

m68k(1)

See machid(l)

1

m68k(1)

February, 1990
RevisionC

machid(l) machid(l)

NAME
m68k, pdpll, u3b, u3b2, u3b5, u3b15, vax - provide
truth value about processor type

SYNOPSIS
m68k

pdpll

u3b

u3b2

u3b5

u3b15

vax

DESCRIPTION
The following commands (corresponding to programs) will return
a true value (exit code of 0) if program currently runs on a proces­
sor that is indicated by the command name.

m68k True if program currently runs on a 680xO.
pdpll True if program currently runs on a PDP-ll/45 or

PDP-ll/70.
True if program currently runs on a 3B 20S. u3b

u3b2
u3b5
u3b15

True if program currently runs on a 3B 2 computer.
True if program currently runs on a 3B 5 computer.
True if program currently runs on a 3B 15 comput-
er.

vax True if program currently runs on a VAX-ll/750 or
V AX-lI/780.

The commands that do not apply will return a false (nonzero)
value. These commands are often used within make(l) makefiles
and shell procedures to increase portability.

FILES
/bin/m68k
/bin/pdpll
/bin/u3b
/bin/u3b2
/bin/u3b5
/bin/u3b15
/bin/vax

February, 1990
Revision C

1

machid(l) machid(l)

SEE ALSO
csh(1), ksh(l), make(l), sh(1), test(l), true(l).

2 February, 1990
RevisionC

macref(1) macref(1)

NAME
macref - produce cross-reference listing of macro files

SYNOPSIS
macref [-t] [-s] [-n] [--] file . ..

DESCRIPTION
The macref program reads the named files (which are assumed
to be nroff(l)/troff(1) input) and produces a cross-reference
listing of the symbols in the input.

A -t in the command line causes a macro table of contents to be
printed. The -s flag option causes symbol-use statistics to be
printed. The -n flag option causes one line to be printed for each
reference to a symbol. The options may be grouped behind one -.
You may use -- to delimit the end of options. macref does not
accept - as standard input.

The default output is a list of the symbols found in the input, each
accompanied by a list of all references to that symbol. macref
lists the symbols alphabetically in the leftmost column, with the
references following to the right. Each reference is given in the
form:

[[(NMname)] Mname-] type Inurn [#]

where the fields have the following meanings:

Mname the name of the macro within which the reference oc­
curs. This field is missing if the reference occurs out­
side a macro. Any names listed in the NMname part
are macros within which Mname is defined.

type the type associated, by context, with this occurrence of
the symbol. The types may be:
r request
m macro
d diversion
s string
n number register
p parameter (e.g. \ $x is a parameter reference to

x. Note that parameters are never modified, and
that the only valid parameter symbol names are
1,2, ... 9).

FebnllUY,1990 1
Revision C

macref(l) macref(l)

Inurn the line number on which the reference occurred.

this reference modifies the value of the symbol.

Generated names are listed under the artificial symbol name
sym.

FILES
/usr/bin/macref

SEE ALSO
nroff(1), troff(1).

2 February, 1990
RevisionC

mactoiso(1) mactoiso(1)

NAME
mactoiso, isotomac - convert from Macintosh® encoding
to International Standards Organization (ISO) encoding

SYNOPSIS
mactoiso [-c char] [file]
isotomac [-c char] [file]

DESCRIPTION
mactoiso reads from the optional file argument or from stan­
dard input, characters encoded according to the Macintosh charac­
ter set and writes them to standard output converted to the ISO
8859-1 character-set encoding scheme.

isotomac does the same type of conversion except that it reads
characters from the ISO character set as input and writes them to
standard output converted to the Macintosh character set. Each
character set contain characters that are not represented in the
other's character set. The command by default places a blank
character in place of the characters that are not represented in the
other character set. The -c option allows the user to specify the
use of another character besides the default blank character.

DIAGNOSTICS
The exit status is 0 if everything is OK and 1 for a usage error.

SEE ALSO
charcvt(3c), mac(5), iso(5).

February, 1990
Revision C

1

mail(l) mail(l)

NAME
mail, rmail- send mail to users or read mail

SYNOPSIS
mail [-e] [-fjile] [-p] [-q] [-r] [-t] address ...

rmail [-t] address . ..

DESCRIPTION

1

mail without arguments prints a user's mail, message-by­
message, in last-in, first-out order. For each message, the user is
prompted with a ?, and a line is read from the standard input to
determine the disposition of the message:

newline
+
d

Go on to next message.
Same as newline.
Delete message and go on to next
message.

p Print message again.
Go back to previous message.

s [file ...] Save message in the named files
(mbox is default).

w [file ...] Save message, without its header,
in the named files (mbox is de­
fault).

m [address . ..] Mail the message to the named ad­
dresses (yourself is default).

q Put undeleted mail back in the
mailfile and stop.

EOT (CONTROL-d) Same as q.
x Put all mail back in the mailfile un­

changed and stop.
! command Escape to the shell to perform com­

mand.
* Print a command summary.

The optional arguments alter the printing of the mail:

-e

-p

-q

causes mail not to be printed. An exit value of 0 is
returned if the user has mail; otherwise, an exit value
of 1 is returned.
causes all mail to be printed without prompting for
disposition.
causes mail to terminate after interrupts. Normally
an interrupt only causes the termination of the mes­
sage being printed.

February, 1990
RevisionC

mail(l) mail(l)

-r causes messages to be printed in first-in, first-out ord-
ere

-ffile causes mail to use file (e.g., mbox) instead of the
default mailfile.

When address is named, mail takes the standard input up to an
end-of-file (or up to a line consisting of just a .) and adds it to
each address's mailfile. The message is preceded by the sender's
name and a postmark. Lines that look like postmarks in the mes­
sage, (i.e., From ...) are preceded with a >. The -t flag option
causes the message to be preceded by all addresses the mail is
sent to. An address is usually a user name recognized by 10-
gin(l). If an address being sent mail is not recognized, or if
mail is interrupted during input, the file dead. letter will be
saved to allow editing and resending. Note that this is regarded as
a temporary file in that it is recreated every time needed, erasing
the previous contents of dead. letter.

To denote a recipient on a remote system, prefix address by the
system name and exclamation mark (see uucp(lC». Everything
after the first exclamation mark in address is interpreted by the re­
mote system. In particular, if address contains additional excla­
mation marks, it can denote a sequence of machines through
which the message is to be sent on the way to its ultimate destina­
tion. For example, specifying a! b! cde as a recipient's name
causes the message to be sent to user b! cde on system a. Sys­
tem a will interpret that destination as a request to send the mes­
sage to user cde on system b. This might be useful, for instance,
if the sending system can access system a but not system b, and
system a has access to system b. mail will not use uucp if the
remote system is the local system name (i.e.,
localsystem! user).

The mailfile may be manipulated in two ways to alter the function
of mail. The other permissions of the file may be read-write,
read-only, or neither read nor write to allow different levels of
privacy. If changed to other than the default, the file will be
preserved even when empty to perpetuate the desired permissions.
The file may also contain the first line:

Forward to address

which will cause all mail sent to the owner of the mailfile to be
forwarded to address. This is especially useful to forward all of a
user's mail to one machine in a multiple machine environment. In

February, 1990
Revision C

2

mail(l) mail(l)

order for forwarding to work properly, the mailfile should have
mail as group ID, and the group permission should be read-write.

rmail permits only the sending of mail; uucp(1C) uses rmail
as a security precaution.

When a user logs in, the presence of mail, if any, is indicated.
Also, notification is made if new mail arrives while using mail.

EXAMPLES
mail cj

accepts whatever message is typed up to an EOF. The user c j
will be notified that he has mail the next time he logs in.

If you want to read mail that has been sent to you, simply type

mail

FILES
/bin/mail
/bin/rmail
/etc/passwd

/ u s r / rna i 1 / user

$HOME/rnbox
$MAIL

/tmp/ma*
/usr/mail/*.lock
$HOME/dead.letter

to identify sender and locate user
addresses
incoming mail for user; i.e., the
mailfile
saved mail
variable containing pathname of
mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO
bi ff(1), login(1), mailx(1), uucp(1C), wri te(1).

BUGS

3

Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing
may be forced by typing a p.

February, 1990
Revision C

mailx(1) mailx(l)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [-d] [-e] [-f [filename]] [-F] [-h number] [-H] [-i]
[-n] [-N] [-r address] [-s subject] [-u user] [-u] [name ...]

DESCRIPTION
mailx provides a flexible environment for sending and receiving
messages electronically. When reading mail, mailx provides
commands to facilitate saving, deleting, and responding to mes­
sages. When sending mail, mailx allows editing, reviewing, and
other modifications of the message as it is entered.

Incoming mail is stored in a standard file for each user, called the
system mailbox for that user, usually named /usr /mail/name.
(y ou may alter this default by using the -f flag option, as shown
later.) When mailx is called to read messages, the mailbox is the
default place to find them. As messages are read, they are marked
to be moved to a secondary file for storage, unless specific action
is taken, so that the messages need not be seen again. This secon­
dary file is named mbox and is normally located in the user's
home directory (see ENVIRONMENT VARIABLES, later, for a
description of this file). Messages remain in this file until forcibly
removed.

On the command line, flag options start with a dash (-) and any
other arguments are taken to be destinations (recipients). If no re­
cipients are specified, mailx will attempt to read messages from
the mailbox. Flag options are:

-d Turn on debugging output; neither particularly
interesting nor recommended.

-e Test for presence of mail. mailx prints noth­
ing and exits with a successful return code if
there is mail to read.

-f [filename] Read messages from filename instead of mail­
box. If no filename is specified, mbox is used.

-F

-h number

February, 1990
Revision C

Record the message in a file named after the
first recipient. Overrides the record variable,
if set (see ENVIRONMENT VARIABLES).

The number of network hops made so far. This
is provided for network software to avoid
infinite delivery loops.

1

mailx(l) mailx(l)

2

-H

-i

-n

-N

-r address

-s subject

-u user

-u

Print header summary only.

Ignore interrupts. See also ignore in EN­
VIRONMENT VARIABLES.

Do not initialize from the system default
/usr/lib/mailx/mailx.rc.

Do not print initial header summary.

Pass address to network delivery software. All
tilde commands are disabled.

Set the Subject header field to subject.

Read user's mailbox. This is only effective if
user's mailbox is not read-protected.

Convert uucp style addresses to internet stan­
dards. Overrides the conv environment vari-
able.

To terminate a mail message, type an end-of-file, or enter a single
period at the start of a line.

When reading mail, mailx is in command mode. A header sum­
mary of the first several messages is displayed, followed by a
prompt indicating mailx can accept regular commands (see
COMMANDS later in this section). When sending mail, mailx
is in input mode. If no subject is specified on the command line, a
prompt for the subject is printed. As the message is typed, mailx
will read the message and store it in a temporary file. Commands
may be entered by beginning a line with the escape character
(tilde (-) by default) followed by a single command letter and op­
tional arguments. See TILDE ESCAPES later in this section, for a
summary of these commands.

At any time, the behavior of mailx is governed by a set of en­
vironment variables. These are flags and valued parameters that
are set and cleared via the se[t] and uns[et] commands. See
ENVIRONMENT VARIABLES, later, for a summary of these
parameters.

Recipients listed on the command line may be of three types: lo­
gin names, shell commands, or alias groups. Login names may be
any network address, including mixed network addressing. If the
recipient name begins with a pipe symbol (I), the rest of the name
is taken to be a shell command to pipe the message through. This
provides an automatic interface with any program that reads the

February, 1990
RevisionC

mailx(1) mailx(1)

standard input, such as lp(1) for recording outgoing mail on pa­
per. Alias groups are set by the a[lias] command (see COM­
MANDS, later) and are lists of recipients of any type.

Regular commands are of the form:

[command] [msglist] [arguments]

If no command is specified in command mode, p[rint] is as­
sumed. In input mode, commands are recognized by the escape
character, and lines not treated as commands are taken as input for
the message.

Each message is assigned a sequential number, and there is at any
time the notion of a "current" message, marked by a > in the
header summary. Many commands take an optional list of mes­
sages (msglist) to operate on, which defaults to the current mes­
sage. A msglist is a list of message specifications separated by
spaces, which may include:

n

$

*
n-m
user
/string

:c

Message number n.
The current message.
The first undeleted message.
The last message.
All messages.
An inclusive range of message numbers.
All messages from user.
All messages with string in the subject line (case ig­
nored).
All messages of type c, where c is one of
d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this
type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage
depends on the command involved. Filenames, where expected,
are expanded via the normal shell conventions (see csh(1». Spe­
cial characters are recognized by certain commands and are docu­
mented with the commands later.

February, 1990
Revision C

3

mailx(1) mailx(l)

At startup time, mailx reads commands from a system-wide file
(/usr/lib/mailx/mailx. rc) to initialize certain parame­
ters, then from a private startup file ($HOME/ . mailrc) for per­
sonalized variables. Most regular commands are legal inside start­
up files, the most common use being to set up initial display op­
tions and alias lists. The following commands are not legal in the
startup file: !, C[opy], e[dit], fo[llowup], F[ollowup],
ho[ld], m[ail], pre[serve], r[eply], R[eply], sh[ell],
and v[isual]. Any errors in the startup file cause the remaining
lines in the file to be ignored.

COMMANDS

4

The following is a complete list of mailx commands:

! shell-command Escape to the shell. See SHELL (EN­
VIRONMENT VARIABLES).

#" comment

?

Null command (comment). This may be
useful in . mailrc files.

Prints the current message number.

Prints a summary of commands.

a[lias] alias name .. .
g[roup] alias name .. .

Declares an a[lias] or g[roup] for the
given names. The names will be substituted
when alias is used as a recipient. Useful in
the . mailrc file.

al t[ernates] name . ..

cd [directory]
ch[dir] [directory]

Declares a list of alternate names for your
login. When responding to a message, these
names are removed from the list of reci­
pients for the response. With no arguments,
alt[ernates] prints the current list of al­
ternate names. (See also allnet under
ENVIRONMENT VARIABLES.)

Changes directory. If directory is not

February, 1990
RevisionC

mailx(1)

c[opy] (filename]
c [opy] [msglist]

C[opy] [msglist]

mailx(1)

specified, $HOME is used.

Copies messages to the file without marking
the messages as saved. Otherwise
equivalent to the s[ave] command.

Saves the specified messages in a file whose
name is derived from the author of the mes­
sage to be saved, without marking the mes­
sages as saved. Otherwise equivalent to the
S[ave] command.

d[elete] [msglist] Deletes messages from the mailbox. If au­
toprint is set, the next message after the
last one deleted is printed (see ENVIRON­
MENT VARIABLES).

di[scard] [header-file . ..]
ig[nore] [header-file ...]

dp [msglist]
dt [msglist]

ec[ho] string

e[di t] [msglist]

February, 1990
Revision C

Suppresses printing of (discard or ignore)
the specified header fields when displaying
messages on the screen. Examples of header
fields to ignore are status and cc. The
fields are included when the message is
saved. The P[rint] and T[ype] com­
mands override this command.

Deletes the specified messages from the
mailbox and print the next message after the
last one deleted. Roughly equivalent to a
d[elete] command followed by a
p[rint] command.

Echos the given strings (like echo(l)).

Edits the given messages. The messages are
placed in a temporary file and the EDITOR
variable is used to get the name of the editor
(see ENVIRONMENT VARIABLES). De­
fault editor is ed(1).

5

mailx(l) mailx(l)

6

ex[i t]
x[it]

fi[le] [filename]
fold[er] [filename]

folders

Exits from mailx, without changing the
mailbox. No messages are saved in the
mbox (see also q[uitD.

Quits the current file of messages and read
in the specified file (folder). Several special
characters are recognized when used as
filenames, with the following substitutions:
% the current mailbox.
% user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

Prints the names of the files in the directory
set by the folder variable (see EN­
VIRONMENT VARIABLES).

fo[llowup] [message]
Responds to (follow up on) a message,
recording the response in a file whose name
is derived from the author of the message.
Overrides the record variable, if set. See
also the F[ollowup], S[ave], and C[opy]
commands and outfolder (ENVIRON­
MENT VARIABLES).

F[ollowup] [msglist]
Responds to (Follow up on) the first mes­
sage in the msglist, sending the message to
the author of each message in the msglist.
The subject line is taken from the first mes­
sage and the response is recorded in a file
whose name is derived from the author of
the first message. See also the
fo[llowup], S[ave], and C[opy] com­
mands and outfolder (ENVIRONMENT
VARIABLES).

February, 1990
RevisionC

mai1x(1)

f[rom] [msglist]

mai1x(1)

Prints the header summary ("from" portion)
for the specified messages.

g[roup] alias name .. .
a[lias] alias name .. .

Declare an a[lias] or g[roup] for the
given names. The names will be substituted
when alias is used as a recipient Useful in
the . mai1rc file.

h[eaders] [message]

he1[p]

Prints the page of headers which includes
the message specified. The screen vari­
able sets the number of headers per page
(see ENVIRONMENT VARIABLES). See
also the z command.

Prints a summary (help list) of commands.

ho[ld] [msglist]
pre[serve] [msglist]

i[f]slr
mail-commands
e1[se]
mail-commands
en[dif]

Holds (Preserves) the specified messages in
the mailbox.

Conditional execution, where s will execute
following mail-commands, up to an e1[se]
or en[dif], if the program is in send mode
(that is, not receiving or reading mail), and r
causes the mail-commands to be executed
only in receive mode. Useful in the
.mai1rc file.

ig[nore] header-file
di[scard] header-file

February, 1990
Revision C

Suppresses printing of (ignore or discard)
the specified header fields when displaying
messages on the screen. Examples of header
fields to ignore are status and cc. All

7

mailx(l) mailx(l)

8

fields are included when the message is
saved. The P[rint] and T[ype] com­
mands override this command.

l[ist] Prints (lists) all commands available. No ex­
planation is given.

m[ail] name Mails a message to the specified users.

mb[ox] [msglist] Arranges for the given messages to end up
in the standard mbox save file when mailx
terminates normally. See mbox (EN­
VIRONMENT V ARIABLES) for a descrip­
tion of this file. See also the ex[i t] and
q[ui t] commands.

n[ext] [message] Goes to the next message matching message.
A msglist may be specified, but in this case,
the first valid message in the list is the only
one used. This is useful for jumping to the
next message from a specific user, since the
name would be taken as a command in the
absence of a real command. See the discus­
sion of msglists above for a description of
possible message specifications.

pi [pe] [msglist] [shell-command]
I [msglist] [shell-command]

Pipes the message through the given shell­
command. The message is treated as if it
were read. If no arguments are given, the
current message is piped through the com­
mand specified by the value of the cmd vari­
able. If the page variable is set, a form feed
character is inserted after each message (see
ENVIRONMENT VARIABLES).

pre[serve] [msglist]
ho[ld] [msglist] Preserves (Holds) the specified messages in

the mailbox.
Iii!

P[rint] [msglist]

February, 1990
RevisionC

mailx(l)

T[ype] [msglist]

p[rint] [msglist]
t[ype] [msglist]

q[uit]

R[eply] [msglist]
R[espond] [msglist]

mailx(l)

Prints (Types) the specified messages on the
screen, including all header fields. Over­
rides suppression of fields by the ig[nore]
command.

Prints (types) the specified messages. If
crt is set, the messages longer than the
number of lines specified by the crt vari­
able are paged through the command
specified by the PAGER variable. The de­
fault command is pg(l) (see ENVIRON­
MENT VARIABLES).

Exits (Quits) from mailx, storing messages
that were read in mbox and unread mes­
sages in the mailbox. Messages that have
been saved explicitly in a file are deleted.

Responds to the author of each message in
the msglist. The subject line is taken from
the first message. If record is set to a
filename, the response is saved at the end of
that file (see ENVIRONMENT V ARI­
ABLES).

r[eply] [message]
r[espond] [message]

S[ave] [msglist]

February, 1990
Revision C

Replies to the specified message, including
all other recipients of the message. If
record is set to a filename, the response is
saved at the end of that file (see ENVIRON­
MENT VARIABLES).

Saves the specified messages in a file whose
name is derived from the author of the first
message. The name of the file is taken to be
the author's name with all network address­
ing stripped off. See also the C[opy],
fo[llowup], and F[ollowup] commands

9

mailx(1)

s[ave] [filename]
s[ave] [msglist]

se[t]
se[t] name
se[t] name=string
se[t] name=number

sh[ell]

si[ze] [msglist]

mailx(1) .

and outfolder (ENVIRONMENT V ARI­
ABLES).

Appends the specified messages to the end
of the given file. The file is created if it does
not exist. The message is deleted from the
mailbox when mailx terminates unless
keeps ave is set (see also ENVIRON­
MENT VARIABLES and the ex[it] and
q[uit] commands). mbox is the default
filename.

Defines (sets) a variable called name. The
variable may be given a null, string, or
numeric value. se[t] by itself prints all
defined variables and their values. See EN­
VIRONMENT V ARIABLES for detailed
descriptions of the mailx variables.

Invokes an interactive shell (see also SHELL
(ENVIRONMENT VARIABLES».

Prints the size in characters of the specified
messages.

so[urce] filename Reads (sources) commands from the given
file and return to command mode.

to[p] [msglist] Prints the top few lines of the specified mes­
sages. If the toplines variable is set, it is
taken as the number of lines to print (see
ENVIRONMENT V ARIABLES). The de­
fault is 5.

tou[ch] [msglist] Touches the specified messages. If any mes- ,
sage in msglist is not specifically saved in a
file, it will be placed in the mbox upon nor-

10 February, 1990
RevisionC

mailx(l)

T[ype] [msglist]
P[rint] [msglist]

t[ype] [msglist]
p[rint] [msglist]

mailx(l)

mal termination. See ex[it] and q[uit].

Prints (types) the specified messages on the
screen, including all header fields. Over­
rides suppression of fields by the ig[nore]
command.

Prints (types) the specified messages. If
crt is set, the messages longer than the
number of lines specified by the crt vari­
able are paged through the command
specified by the PAGER variable. The de­
fault command is pg(l) (see ENVIRON­
MENT VARIABLES).

u[ndelete] [msglist]

uns[et] name

ve[rsion]

v[isual] [msglist]

Restores (un deletes) the specified deleted
messages. Will restore only those messages
deleted in the current mail session. If au­
toprint is set, the last message of those
restored is printed (see ENVIRONMENT
VARIABLES).

Causes the specified variables to be erased
(unset). If the variable was imported from
the execution environment (Le., a shell vari­
able) then it cannot be erased.

Prints the current version and release date.

Edits the given messages with a (visual)
screen editor. The messages are placed in a
temporary file and the VISUAL variable is
used to get the name of the editor (see EN­
VIRONMENT VARIABLES).

w[ri tel [msglist] Writes the given messages on the specified
file, minus the header and trailing blank line.
Otherwise equivalent to the s[ave] com-

February, 1990 11
Revision C

mailx(l) mailx(l)

x[it]
ex[it]

z[+I-]

mand.

Exits from mailx, without changing the
mailbox. No messages are saved in the
mbox (see also q[ui tn.
Scrolls the header display forward or back­
ward one screenful. The number of headers
displayed is set by the screen variable (see
ENVIRONMENT VARIABLES).

TILDE ESCAPES

12

The following commands may be entered only from input mode,
by beginning a line with the escape character (tilde (-) by de­
fault). See escape under ENVIRONMENT VARIABLES for
changing this special character.

- ! shell-command Escape to the shell.

-: mail-command

- mail-command

a

-b name

-c name

Simulate end-of-file (terminate message in­
put).

Perform the command-level request. Valid
only when sending a message while read­
ing mail.

Print a summary of tilde escapes.

Insert the autograph string Sign into the
message (see ENVIRONMENT VARI­
ABLES).

Insert the autograph string sign into the
message (see ENVIRONMENT V ARI­
ABLES).

Add the names to the blind carbon copy
(bee) list.

Add the names to the carbon copy (c c)
list.

Read in the dead. letter file. See
DEAD under ENVIRONMENT VARI­
ABLES for a description of this file.

February, 1990
RevisionC

mailx(1)

e

- f [msglist]

- i string

-m [msglist]

p

q

- r filename

-< filename

mailx(1)

Invoke the editor on the partial message.
See also EDITOR under ENVIRONMENT
VARIABLES.

Forward the specified messages. The mes­
sages are inserted into the message,
without alteration.

Prompt for Subject line and To, Cc,
and bcc lists. If the field is displayed with
an initial value, it may be edited as if you
had just typed it.

Insert the value of the named variable into
the text of the message. For example, - A
is equivalent to - i Sign.

Insert the specified messages into the letter,
shifting the new text to the right one tab
stop. Valid only when sending a message
while reading mail.

Print the message being entered.

Quit from input mode by simulating an in­
terrupt. If the body of the message is not
null, the partial message is saved in
dead. letter. See DEAD (ENVIRON­
MENT VARIABLES) for a description of
this file.

-< ! shell-command Read in the specified file. If the argument
begins with an exclamation point (!), the
rest of the string is taken as an arbitrary
shell command and is executed, with the
standard output inserted into the message.

- s string Set the subject line to string.

-t name

v

February, 1990
Revision C

Add the given name to the To list.

Invoke a preferred (visual) screen editor on
the partial message. See also VI SUAL
under ENVIRONMENT VARIABLES.

13

mailx(l) mailx(l)

-w filename

- I shell-command

Write the partial message onto the given
file without the header.

Exit as with - q except the message is not
saved in the DEAD file.

Pipe the body of the message through the
given shell-command. If the shell­
command returns a successful exit status,
the output of the command replaces the
message.

ENVIRONMENT VARIABLES

14

The following are environment variables taken from the execution
environment and cannot be altered within mailx.

HOME= directory

MAILRC= filename

The user's base of operations.

The name of the startup file. Default is
$ HOME I .mailrc.

The following variables are internal mailx variables. They may
be imported from the execution environment or set via the se[t]
command at any time. The uns[et] command may be used to
erase variables.

allnet All network names whose last component (login
name) match are treated as identical. This causes
the msglist message specifications to behave simi­
larly. Default is noallnet. See also the
alt[ernates] command and the
metoo variable.

append

askcc

asksub

Upon termination, appends messages to the end of
mbox file instead of at the top of mbox. Default is
noappend (Le., by default mailx saves mes­
sages at the top of mbox on exit).

Prompt for the Cc list after message is entered.
Default is noaskcc.

Prompt for subject if it is not specified on the com­
mand line with the -s flag option. Enabled by de-
fault.

autoprint Enable automatic printing of messages after
d[elete] and u[ndelete] commands. Default
is noautoprint.

February, 1990
Revision C

mailx(l) mailx(l)

bang Enable the special-casing of exclamation points
(!) in shell escape command lines, as in vi(l).
Default is nobang.

cmd=shell-command
Set the default command for the pi [pe] command.
No default value.

conv=conversion
Converts uucp addresses to the specified address
style. The only valid conversion now is inter­
net, which requires a mail delivery program con­
forming to the RFC822 standard for electronic mail
addressing. Conversion is disabled by default. See
also sendmail and the -u flag option.

crt =number Pipes messages having more than number lines
through the command specified by the value of the
PAGER variable (pg(l) by default). Disabled by
default.

DEAD=filename
The name of the file in which to save partial letters
in case of untimely interrupt or delivery errors.
Default is $HOME/dead.letter.

debug Enables verbose diagnostics for debugging. Mes­
sages are not delivered. Default is nodebug.

dot Takes a period on a line by itself during input from
a terminal as end-of-file. Default is nodot.

ED I TOR=shell-command
The command to run when the e[dit] or -e com­
mand is used. Default is ed(I).

escape=c Substitute c for the - escape character.

folder=directory

February, 1990
Revision C

The directory for saving standard mail files. User­
specified filenames beginning with a plus (+) are
expanded by preceding the filename with this direc­
tory name to obtain the real filename. If directory
does not start with a slash (I), $HOME is prefixed
to it. In order to use the plus (+) construct on a
mailx command line, folder must be an export­
~ sh environment variable. There is no default
for the folder variable. See also outfolder,

15

mailx(l) mailx(l)

16

later.

header Enables printing of the header summary when
entering mailx. Enabled by default.

hold Preserves all messages that are read in the mailbox
instead of putting them in the standard mbox save
file. Default is nohold.

ignore Ignores interrupts while entering messages. Handy
for noisy dial-up lines. Default is noignore.

ignoreeof Ignores end-of-file during message input. Input
must be terminated by a period (.) on a line by it­
self or by the -. command. Default is noig­
noreeof. See also dot, above.

keep When the mailbox is empty, truncate it to zero
length instead of removing it. Disabled by default.

keepsave Keeps messages that have been saved in other files
in the mailbox instead of deleting them. Default is
nokeepsave.

MBOX =.filename
The name of the file in which to save messages that
have been read. The x[i t] command overrides
this function, as does saving the message explicitly
in another file. Default is $HOME/mbox.

metoo If your login appears as a recipient, do not delete it
from the list. Default is nometoo.

LI S TER=shell-command

onehop

The command (and flag options) to use when list­
ing the contents of the folder directory. The de­
fault is 15(1).

When responding to a message that was originally
sent to several recipients, the other recipient ad­
dresses normally are forced to be relative to the ori­
ginating author's machine for the response. This
flag option disables alteration of the recipients' ad­
dresses, improving efficiency in a network where
all machines can send directly to all other machines
(i.e., one hop away).

out folder Cause the files used to record outgoing messages to
be located in the directory specified by the fold-

February, 1990
RevisionC

mailx(l) mailx(l)

e r variable, unless the pathname is absolute. De­
fault is nooutfolder. See folder above and
the S[ave], C[opy], fo[llowup], and
F[ollowup] commands.

page Used with the pi[pe] command to insert a
formfeed after each message sent through the pipe.
Default is nopage.

P AGER=shell-command
The command to use as a filter for paginating out­
put. This can also be used to specify the flag op­
tions to be used. Default is pg(1).

prompt=string

quiet

Set the command mode prompt to string. Default
is? .

Refrain from printing the opening message and ver­
sion when entering mailx. Default is noquiet.

record=filename
Record all outgoing mail in filename. Disabled by
default. See also outfolder, above.

save Enable saving of messages in dead. letter on
interrupt or delivery error. See DEAD for a descrip­
tion of this file. Enabled by default.

screen=number
Sets the number of lines in a screenful of headers
for the h[eaders] command.

sendmail=shell-command
Alternate command for delivering messages. De­
fault is mail(I).

sendwai t Wait for background mailer to finish before return­
ing. Default is nosendwai t.

SHE LL=shell-command

showto

February, 1990
Revision C

The name of a preferred command interpreter. De­
fault is sh(I).

When displaying the header summary and the mes­
sage is from you, print the recipient's name instead
of the author's name.

17

rnai1x(l) rnai1x(1)

sign=string The variable inserted into the text of a message
when the - a (autograph) command is given. No
default (see also - i (TILDE ESCAPES)).

Sign=string The variable inserted into the text of a message
when the - A command is given. No default (see
also -i (TILDE ESCAPES)).

top1ines=number
The number of lines of header to print with the
to (top) command. Default is 5.

VI SUAL=shell-command
The name of a preferred screen editor. Default is
vi(1).

FILES
/usr/bin/rnai1x
/usr/1ib/rnai1x
$HOME/ . mai1rc personal startup file
$HOME/mbox secondary storage file
/ us r / rna i 1/ * post office directory
/usr/1ib/mai1x/rnai1x.he1p*

help message files
/usr/1ib/rnai1x/rnai1x.rc

global startup file
/tmp/R[ernqsx] * temporary files

SEE ALSO
biff(I), csh(1), ksh(1), mai1(1), pg(I), sh(I), ls(1),
AIUX Essentials.

BUGS

18

Where shell-command is shown as valid, arguments are not al­
ways allowed. Experimentation is recommended.

Internal variables imported from the execution environment can­
not be unset (uns[et]).

The full internet addressing is not fully supported by rnai1x. The
new standards need some time to settle down.

Attempts to send a message having a line consisting only of a .
are treated as the end of the message by mai1(1) (the standard
mail delivery program).

February, 1990
RevisionC

make(l) make(l)

NAME
make - maintain, update, and regenerate groups of files

SYNOPSIS
make [-b] [-B] [-ddigits] [-e] [-f description-file] [-g] [-i]
[-k] [-K] [-n] [-p] [-p] [-q] [-r] [-s] [-t] [-u] [target ...]

DESCRIPTION
make is used to maintain, update, and regenerate groups of files.
The make program was designed to manage the systematic regen­
eration of programs and is typically used, but is not limited to, that
purpose.

The actions of make are governed by a set of built-in rules. The
user can supplement or replace these rules by providing an ap­
propriate description-file.

The following is a brief description of all flag options:

-b Use compatibility mode for old description files. This mode
is on by default.

-B Turn off compatibility mode.

-ddigits
Debug mode. If specified without digits, full debug mode is
invoked. If specified with a single digit, the specified debug
subset is invoked; -ddigits invokes each specified subset.
Currently, subsets 0 and 1 are implemented.

-e Cause environment variables to override macro definitions
within the description file.

-f description-file
Use the description file specified by des cription-fi Ie . A
description file of - (hyphen) denotes the standard input.

-g Turn on additional capabilities to automatically checkout
SCCS files. See "SCCS File Handling" below.

-i Ignore any error code that might be returned by a shell com­
mand. This mode can also be entered if the target . I G­
NORE: (see "Built-in Targets" below) appears in the
description file.

-k If a shell command returns a nonzero status, abandon work
on the current target, but continue to process other targets
that do not depend on the abandoned target.

February, 1990
Revision C

1

make(l) make(l)

2

-K Tum off the -k flag option. The -K flag option is on by de­
fault. The -K flag option is most often used in a description
file that invokes make t that is a member of a multi-level
make hierarchYt and that is invoked by a top-level make
with the - k flag option.

-n Print the commands in the description file as they would be
executedt but do not actually execute them. Even lines be­
ginning with an @ (at sign) are printed (see "Targets and
Dependency StatementsH below). Howevert if a command
line has the string $ (MAKE) in itt the line is always executed
(see discussion of the $MAKEFLAGS macro under "Environ­
ment Variables and MacrosH below).

-p Print out the built-in rules of make t including a complete set
of macro definitions.

-P Search for Pre and Post files (see "MakeFileH below) in
the directory /usr/lib. For examplet for a description
file named x . mkt make will search for and read
/usr/lib/x.mkPre and /usr/lib/x.mkPost.

-q Question. The make command returns a zero or a nonzero
status code depending on whether or not the target file is up­
to-date.

-r Do not use the built-in rules of make. To do useful workt
this flag option must be accompanied by an appropriate
description file.

-s Silent mode. Do not print command lines before executing
them. This mode is also entered if the target . S I LENT: ap­
pears at any place in the description file.

-t touch(l) the target files (causing them to be up-to-date)
without executing any commands.

-u Look for makecomm and Makecomm files in the use(s
home directoryt as specified by the $HOME environment vari­
ablet and in the current directory. The search order is
$HOME/makecommt $HOME/Makecommt ./makecomm
and . /Makecomm. At mostt one file from each directory is
read by make. These files are read before any description
files and can be used to define macros and rules.

February t 1990
Revision C

make(1) make(1)

Suffix List and Built-in Rules
make uses a suffix list and a set of built-in rules to detennine how
to regenerate a file. The suffix list and the built-in rules are based
on the file naming requirements of the various software generation
tools in the AjUX® environment. For example, a file whose
suffix is . s is typically an assembly language program that is pro­
cessed by the a s command. A file whose suffix is . c is typically
a C program that is processed by the cc command.

For example, if make is requested to regenerate a file called x. 0,
make examines the name of each file in the current directory and
looks for all files that have a base name of x and a suffix. In this
case, make finds the file x. c and then extracts and saves the
suffix, . c. make then prepends the suffix to each member of the
default suffix list, one at a time, and attempts to match the result­
ing string against each built-in rule, from the beginning of the
rules to the end. If no match is found, make prepends the suffix
to the next element in the suffix list. If no match is ever found,
make concludes that it does not know how to regenerate the re­
quested file. When a match is found, make executes the com­
mands that are associated with the matched rule. In this case, the
string. c. 0 matches the . c. 0 built-in rule. For the . c. 0 rule,
the associated command is cc -0 -c base-name. c. make
then executes the command, which in this case generates the re­
quested file, x . o.

For this version of make, the suffix list is, reading across the
columns,

.obj . obj - . for . for-

.pas .pas . f . f-

.0 .c .c- .y

.y .1 .1- .s

.s- .sh . sh- .h

.h- .i

For this version of make, the built-in rules are, reading across the
columns,

.c

.c.o

.s-.o

.y.o

.y.c

.c-.a

February, 1990
Revision C

.c

.c- .0

.c.i
-.y .0
-.y .c

.s-.a

.sh .sh-

.c-.c .s.o

.c-.i .c.s

.1.0 .1 - .0

.1.c .c.a

.h-.h .f.o

3

make(l) make(l)

4

.f-.o .p.o .p-.o .for.obj

.for-.obj .pas.obj .pas-.obj

The suffix list and built-in rules demonstrate three important
features of make. First, the order of the suffix list and the built-in
rules is extremely important because the order of both governs
which rule will be used to process a file.

Second, the built-in rules demonstrate the right-most suffix
member of a rule can be empty. This is true for the first four
built-in rules. For example, the . c rule allows make to regen­
erate the file x, which has no suffix, from the file x . c.

Third, both the suffix list and the built-in rules contain the tilde (-)
character. To make, the tilde character indicates an sees file
(see sccsfile(4». Because make was designed to parse
suffixes, and sees files are identified by their s. prefix, make
internally converts references of the form s .filename to
filename-. Thus, the rule. c-. 0 would transform an sees e
source file into an object file (. 0).

By definition, a rule starts with a period (.) and cannot contain a
slash (I). The format of a rule is:

. target: [:] [dependency-list]
<tab> [shell-command]

where target and at least one colon are required. Items enclosed
in square brackets ([]) are optional.

Built-in rules cannot rely on another built-in rule to resolve a
dependency. Only explicit dependencies can be listed in the
dependency list of a rule.

Description Files
The built-in rules are often supplemented or overriden by the con­
tents of a user-written description file. If the -f flag option is not
present, the search order for description files is as shown below:

./makefile

./Makefile

./MakeFile

./s.makefile

./SCCS/s.makefile

./s.Makefile

February, 1990
RevisionC

make(l)

./SCCS/s.Makefile

./s.MakeFile

./SCCS/s.MakeFile

make(l)

The new description file, MakeFile is described under
"MakeFile Pre- and Post-Processing" below. If the description
file is -, the standard input is taken. More than one -f
description-file argument pair may appear on the command line.

Include Files
If the string include or Include appears as the first seven
characters of a line in a description file and is followed by a blank
or tab character, make assumes that the rest of the line is the name
of a description file, which is read by the current invocation of
make, after macro substitution. The difference between in­
clude and Include is that if include does not exist, make
will terminate with an error message. If Include does not ex­
ist, make will continue processing and will not issue an error mes­
sage.

Targets and Dependency Statements
While make can use its built-in rules to perform simple regenera­
tion tasks, make requires direction from the user to accomplish
more complicated tasks, such as regenerating a program that is
comprised of multiple source files. That direction is provided by
the user in a description file from which make reads and
processes user-written dependency statements to update one or
more targets. The target is usually, but does not have to be, a pro­
gram. If the dependency statement is incomplete, make uses its
built-in rules to supplement the dependency statement.

The format for a dependency statement is nearly identical to the
format for a built-in rule; a distinction is maintained so that if the
user wishes to completely replace an existing built-in rule, the user
can do so by providing the new rule in the description file. The
format of a dependency statement is shown below:

target [target] : [:] [dependency-list] [;]
<tab>shell-command

Each target is an alphanumeric string separated by a blank. A tar­
get name cannot begin with a tab or a period (.) and cannot con­
tain a colon (:) or a semicolon (;). At least one colon is re-

February, 1990
Revision C

5

make(1) make(l)

6

quired; a second colon is optional. The colon must be preceded by
at least one target. The dependency-list is a blank-separated list of
items on which the target depends. The items can be file names or
other targets. The shell-commands are the commands that will be
executed to update the target Each shell command must be pre­
ceded by a tab character.

If a shell command is so long that it must be spread over two or
more lines, the newline, which is automatically placed at the end
of the each line by the standard text editors, can be escaped by a
backslash (\).

Command lines are executed one at a time, each by its own shell.
To have a series of commands executed by the same shell, append
a semicolon (;) to the end of each shell command and escape any
newlines, as previously described. This treatment of shell com­
mands is particularly important for commands that are executed
directly by the shell and whose result is effective only for the life­
time of the shell, such as the cd command.

By default, make hands shell commands to the Bourne shell, but
if the $SHELL variable is set and exported in the user's environ­
ment, make hands shell commands to the specified shell.

make interprets the * character as the beginning of a comment
When parsing lines in a description file, make determines that the
first line that does not begin with a tab or a * begins a new depen­
dency statement or macro definition (see below).

The following example illustrates many of the concepts described
above. In this dependency statement, the target is a program
called pgm. pgm depends on two files a . a and b. 0, and they in
tum depend on their corresponding source files a . c and b . c and
a common file incl. h:

* * Making pgm.

* pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c;\
echo "Done compiling a.c"

b.o: incl.h b.c
cc -c b.c;\
echo "Done compiling b.c"

February, 1990
RevisionC

make(l) make(l)

make updates a target only if its dependents are newer than the
target. For this example, make will generate a new a. 0 if the
modification time of either incl. h or a. c is newer than the
modification time of a . 0 or if a. 0 does not exist. The same is
true ofb. o.

Each line in a description file is terminated by a newline character.
In the previous example, a semicolon is appended to the end of the
line that invokes the C compiler and the newline is escaped by the
a backslash character to pass both the invocation of the C com­
piler and the echo command to the same instance of the shell.

Because the built-in rules can be used to determine that a. c and
b . c can be used to generate a. 0 and b. 0 respectively, the
dependency statement for making pgm can be written more
briefly:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

When parsing shell commands, make first prints the command
and then passes everything except the initial tab character directly
to the shell as is. The following example uses "<tab> " to
represent the tab character.

<tab>echo a \
<tab>b

When processed by make the following output will be produced:

<tab>echo a \
<tab>b
ab

The first and second lines are printed by make before the initial
tab character is stripped and the third line is printed by the echo
command.

Printing of the command before execution can be turned off by
preceding each command with the @ character. For example, if
the description file contains

@echo a\
b

the output of make will be

ab

February, 1990
RevisionC

7

make(l) make(l)

8

Single-Colon and Double-Colon Targets
As described in the format for a dependency statement above, a
dependency statement must have at least one colon, but may have
an optional second colon. For the following dependency state­
ment

a: b.o
a: C.O
a: d.o

make concludes that a depends on b. 0, C . 0, and do o. That is,
the preceding dependency statements are equivalent to

a: boo Coo doo

make treats dependency statements that have two colons dif­
ferently so that a description file that contains

a' 0 boO
a o

0 Coo
a' 0 doo

contains three distinct and separate dependency statements.
Whether a single-colon or double-colon rule, the target is updated
whenever one of the following conditions is true:

Single-Colon
if any dependent is newer than the target, or
if the target does not exist

Double-Colon
if any dependent is newer than the target, or
if the target does not exist, or
if the target does not have a dependency list

Double-colon dependency statements are useful for those situa­
tions where a single target name is desired, but depending on the
context, different commands need to be executed to update the tar­
get. For example:

a o
0 aosh

cp aosh a

a o
0 aoc

cc -0 a a.c

The first dependency statement is executed if the current directory
contains the file a 0 sh, and the second dependency statement is

February, 1990
RevisionC

make(1) make(l)

executed if the current directory contains the file a. c. If both
a . sh and a. c exist in the current directory, one or both target
statements could be executed depending on whether the target is
older than the dependents. If the target is missing, the target is
considered to be older than the dependents.

Double-colon dependency statements are also useful for situta­
tions in which a target has the same name as a subdirectory in the
current directory. For example, if the dependency statement is

mail:
cd mail; \
cc mail.o -0 mail

and the current directory contains a directory called mail, the
commands to update the target will never be invoked. This is be­
cause rna ke assumes that if the target rna i 1 exists (even if it is a
directory) and has no dependency list, the target is up-to-date. As
a result, the target name in single-colon dependency statement
should never be the name of a subdirectory in the current directo­
ry. Often, however, assigning the target the same name as the
directory that contains the files on which the target depends makes
the description file more meaningful to the user. make processes
double-colon dependency statements differently so that,

mail: :
cd mail; \
cc mail.o -0 mail

works as desired. This is because if a double-colon dependency
statement has no dependency list, make processes the commands
that up-date the target even if the target already exists. The caveat
is, however, that make always recompiles mail. c even when
the executable mail is newer than mail. c. A better solution
to this problem is described under "Attributes" below.

As mentioned earlier, the user can replace a built-in rule by pro­
viding a new rule of the same name in the description file. The
user can also disable a built-in rule as shown by the following ex­
ample:

. c. a:;

make interprets a semicolon (;) that is not preceded by a com­
mand as a null command, which has the effect of disabling the
specified rule.

February, 1990
Revision C

9

make(l) make(1)

10

Just as the built-in rules can be replaced, so can the default suffix
list. The following line in a description file clears the suffix list:

• SUFFIXES:

The following line appends additional suffixes to the end of the
existing suffix list:

• SUFFIXES: .n .x

Multiple suffix lists accumulate until cleared, as shown above, or
make terminates.

Built-in Targets
The targets described in this section are actually built-in rules that
enabled by the user by including them in a description file. If
present, they modify the default behavior of make. Because
make reads the entire description file before beginning to process
dependency statements, the following built-ins, which must appear
at the beginning of a line, are processed first, whether they appear
at the beginning, middle, or end of the description file .

• DEFAULT:
If a file must be made but there are no explicit shell com­
mands or relevant built-in rules, the shell commands listed
under. DEFAULT: are used .

• IGNORE:
If present, . IGNORE has the same effect as the -i flag op­
tion, which is to ignore nonzero return codes from com­
mands .

• PRECIOUS:
The default behavior of make is to remove a target and its
dependents when a quit or interrupt signal is received while
processing the commands that update the target. Because the
actions of make depend in large part on the mere existence
of a file, removal of potentially incomplete files helps ensure
that the proper files are regenerated each time. Removal can
be avoided by making specific files dependent on . PRE­
CIOUS:. See "Error Handling" below for further details .

• MAKESTOP [exit-code]:
If present, .MAKESTOP: causes make to exit. .MAKES­
TOP: is useful in a multi-level directory and description file
hierarchy to quickly by-pass a make in a particular directory
or directories. exit-code is optional and defaults to zero if not
specified. If no exit code is specified or if the specified exit

February, 1990
RevisionC

make(l) make(l)

code is zero, make exits silently. If a nonzero exit code is
specified, make prints a warning message .

. SILENT:
If present, . S I LENT: has the same effect as the -5 com­
mand line flag option.

Environment Variables and Macros
The documentation for make uses the tenn macro to name the en­
tities that the shell documentation calls environment variables. A
macro is a variable whose value is set in a description file and can
be overridden from the make command line. Although make and
the shell use these entities in nearly identical ways, there are
differences, which are described below.

The following sample shell script

NAME=Joe
echo NAME
echo $NAME

produces the following result

NAME
Joe

The difference between the first and second echo commands is
that first simply requests that the string NAME be echoed, while
the second, by the prepended dollar sign ($) requests that the con­
tents of NAME be echoed. Such a request is called expansion.

Expansion is handled differently in make. The following exam­
ple description file

NAME=joe

all:
echo NAME
echo $NAME

produces the following result

NAME
AME

This is because make requires that macro names that are longer
than one character be enclosed by parentheses or braces for ex­
pansion to occur. In this case, make sees the $ and attempts to
expand a variable named N. No such variable is set, so nothing is

February, 1990
Revision C

11

make(l) make(1)

12

echoed and the echo command completes by echoing AME.
The following description file produces the desired result:

NAME=joe

all:
echo NAME
echo $ (NAME)

The use of braces is equivalent to the use of parentheses, so that
$ {NAME} is equivalent to $ (NAME) .

Each time make evaluates a macro, make strips one dollar sign
($) from it. Therefore. an extra dollar sign should be prepended to
any macro that is part of a shell command line. When make is in­
voked, make reads the user's environment and makes all the vari­
ables found there available for modification by the description file.

Environment variables are processed before any description file
and after the built-in rules; macro definitions in a description file
override environment variables of the same name. The -e flag
option causes environment variables to override macro definitions
of the same name in a description file.

The fonna! definition of a macro is shown below:

macro-name = string2

By convention, macro names are upper-case. macro-name is an
alphanumeric string that cannot contain a colon (:) or a semicolon
(;). The equal sign (=) can be surrounded by spaces or tabs.
string2 is defined as all characters up to a comment character or
an unescaped newline.

make provides several built-in macros. These macros are
described below:

MAKEFLAGS
If not present in the environment, make creates the
MAKEFLAGS macro and assigns to it the flag options with
which make was invoked. MAKEFLAGS is processed by
make as containing any legal input flag option (except -f,
-p, -P, -r, and -u) Thus, MAKEFLAGS always contains the
current input flag options. This proves very useful for
"super-makes". In fact, as noted above, when the -n flag
option is used, the command $ (MAKE) is executed anyway;
hence, one can perform a make -n recursively on a whole
software system to see what would have been executed. This

February, 1990
RevisionC

make(l) make(l)

is because the -n is put in MAKEFLAGS and passed to further
invocations of $ (MAKE). This is one way of debugging all
of the description files for a software project without actually
causing the execution of update commands.

MAKE LEVEL
If not present in the environment, make creates the
MAKELEVEL macro, assigns an initial value of zero, and ex­
ports it. If already present in the environment, make incre­
ments the value of MAKE LEVEL by one. In this way, each
subordinate invocation of make can know its level in a
multi-level make hierarchy. This macro is read-only and
cannot be modified by the description file.

MAKEBDIR
If not present in the environment, make creates the
MAKEBDIR macro and assigns to it the absolute pathname of
the current directory. If already present in the environment,
the value of MAKEBDIR is not changed. MAKEBDIR pro­
vides a way for each subordindate invocation of make to
obtain the path name of the top-level make.

MAKE GOALS
For every invocation of make, make creates the
MAKEGOALS macro and assigns to it the targets that were
specified on the command line. For the command line,

$ make clean all clobber

MAKEGOALS will be set to "clean all clobber". If the
current invocation of make invokes make, the invocation
can be made as shown in the following example:

MAKE=make
cd dir; $ (MAKE) $ (MAKEGOALS)

In this way, the same command line arguments can be passed
to subordinate invocations of make.

VPATH
This version of rna ke supports special processing of macro
VPATH, if set. VPATH is useful for processing files that are
located in a directory other than the current directory. In the
following example, main. c is located in the current directo­
ry. funcl. c is located in .. / cornmon, and func2 . c is
located in .. / incl. make will search the directories
specified by the VPATH variable for any dependencies that

February, 1990
Revision C

13

make(l) make(l)

14

are not in the current directory.

VPATH= .. /common: .. /incl
main: main.o funcl.o func2.0

cc -0 $@ $>

In this example, $@ (described below) expands to the target
name and $ > (described below) expands to the list of depen­
dencies on the current target. If main. c, funcl. c, or
func2 . c are not present in the current directory, make will
use its built-in rules to search for sees versions of the files
in the current directory (see "sees File Handling" below).
If sees versions of the files are not found, make will search
the pathnames specified by VPATH.

The following built-in macros define values for common software
generation programs or flag options to those programs. Descrip­
tion files can replace or supplement the values of these macros to
change the way in which the built-in rules work:

AR This macro is defined as a r.

AS This macro is defined as as.

ASFLAGS
This macro is defined as null and is provided as an argument
to the assembler.

CC This macro is defined as cc.

CFLAGS
This macro is defined as -0 and is provided as an argument
to the e compiler.

CHMOD
This macro is defined as chmod.

CP This macro is defined as cpo

F77
This macro is defined as f 77.

F77FLAGS
This macro is defined as null and is provided as an argument
to the FORTRAN compiler.

FORTRAN
This macro is defined as fortran.

FORTRANFLAGS
This macro is defined as null and is provided as an argument

February, 1990
Revision C

make(l) make(l)

to the FORTRAN compiler.

GET
This macro is defined as get and is used to get sees ver­
sions of files.

GFLAGS
This macro is defined as null and is provided as an argument
to get.

LD This macro is defined as 1 d.

LDFLAGS
This macro is defined as null and is provided as an argument
to ld.

LEX
This macro is defined as lex.

LFLAGS
This macro is defined as null and is provided as an argument
to lex.

MAKE
This macro is defined as make.

MV This macro is defined as mv.

PASCAL
This macro is defined as pascal.

PASCALFLAGS
This macro is defined as null and is provided as an argument
to pc.

PC This macro is defined as pc.

PCFLAGS
This macro is defined as null and is provided as an argument
to pc.

RM This macro is defined as rm.

YACC
This macro is defined as yacc.

YFLAGS
This macro is defined as null and is provided as an argument
to yacc.

February, 1990
RevisionC

15

make (1) make(l)

16

The following six built-in macros have special expansion capabili­
ties that are useful for writing shell commands.

* The * macro stands for the file name part of the current
dependent with the suffix deleted. It is evaluated only for
built-in rules.

@ The @ macro stands for the full target name of the current tar­
get. It is evaluated only for explicitly-named dependencies.

< The < macro is evaluated only for built~in rules or the . DE­
FAULT rule. It is the module that is out-of-date with respect
to the target (i.e., the "manufactured" dependent file name).
Thus, in the . c . 0 rule, the < macro would evaluate to the
. c file. An example for making optimized . 0 files from . c
files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

? The? macro is evaluated when explicit rules from the
description file are evaluated. It is the list of prerequisites
that are out of date with respect to the target; essentially,
those modules that must be rebuilt.

% The % macro is only evaluated when the target is an archive
library member of the form lib (file. 0). In this case, @

evaluates to lib and % evaluates to the library member,
file. o.

> The > macro is expanded to list all the dependencies on the
current rule.

These six macros can have alternative forms. When an upper case
D or F is appended to any of the six macros, the meaning is
changed to "directory part" for D and "file part" for F. Thus,
$ (@D) refers to the directory part of the string @. If there is no
directory part, . / is generated.

The following description file demonstrates the use of the ? and >
macros in their standard and alternate forms:

pgrn:
@echo It? = $?"

February, 1990
RevisionC

make(l) make(1)

@echo "?O = $(?O)"
@echo "?F = $(?F)"
@echo "> = $>"
@echo ">0 $(>0)"
@echo ">F = $(>F)"

pgm: dir/a.o
pgm: dir/b.o
pgm: dir/c.o

When a. 0 is the only object that is newer than the pgm, the fol­
lowing is output from make:

? = dir/a.o
?O = dir
?F = a.o
> = dir/a.o dir/b.o dir/c.o
>D dir dir dir
>F = a.o b.o c.o

Macro Substitution
The contents of a macro can be substituted as shown below:

$ (macro-name [: substl =[subst2]])

are replaced by string2, which is delimited by blanks, tabs, new­
line characters and the beginning of lines. A substitute sequence
can only replace the trailing characters of substl. For example,

SAMPLE=/a/b/file.test

all:
$ (SAMPLE:file=FILE)"
$ (SAMPLE:test=TEST)"
$ (SAMPLE:a/=A/)"

@echo "1
@echo "2
@echo "3
@echo "4
@echo "5

$ (SAMPLE:b/file.test=K)"
$ (SAMPLE:a=A)

has the following output

1 /a/b/file.test
2 /a/b/file.TEST
3 /a/b/file.test
4 /a/K
5 /a/b/file.test

In the above example, only the second and fourth examples are

February, 1990 17
Revision C

make(1) make(1)

18

successful. The other examples fail because they do not substitute
the trailing characters of the expanded macro.

The following example demonstrates the usefulness of string sub­
stitution:

all: /u/test/a.o
cc -8 $(?:a=.c)
mv $(?:.o=.s) .tmp
sed "s/text/data/" > $(?:.o=.s) < .tmp
as -0 $@ $(?:.o=.s)
rm .tmp

The above example uses the @ (expand to the full target name of
the current target) and the ? (expand to the list of out-of-date
dependencies) macros to produce the assembly language file for
each dependent of the a 11 target, change each occurrence of
text to data using sed, and assemble each resulting . s file.

Substitution works only on macros that are part of shell command
lines. This version of make does not support substitutions of
macros that are part of dependency lists.

Macro Testing
This version of make supports the testing of macros, where the
format is:

$ (macro-name: test-operator)

The macro name may be set or unset and with or without an as­
signed value. The test-operator can be one of the following:

L The macro is expanded to the length of it's contents. An
empty or null value expands to zero. This test operator is
useful for determining whether or not to examine the contents
ofamacro.

v If the macro is set and has a non-null value, the macro is ex­
panded to null; otherwise, the macro is expanded to =It. This
test can be used to control the execution of command lines as
shown below:

$ (macro-name: V) conditional-command

If the macro is not set, the macro is expanded to =It, which
causes make to evaluate the line as a comment. As a result,
conditional-command is not executed.

February, 1990
Revision C

make(1) make(1)

N If the macro is set and has a non-null value, the macro is ex­
panded to #; otherwise, the macro is expanded to null. This
is the opposite of the V test operator described above and is
used in the same way as the v test operator.

For example, assume the desire to have a target called clean if
the macro $CLNFILES is set The dependency statement would
remove the files expanded from this macro. Here is how the
dependency statement would look:

$ (CLNFILES:V) clean:
$ (CLNFILES:V) @echo "Removing: $(CLNFILES)";\

rm -f $ (CLNFILES)

If the $CLNFILES macro is set and contains a non-null value,
the $ (CLNFILES :V) macro will be nulled out when make
reads the description file, and the line is be processed just as if the
description file contained:

clean:
@echo "Removing: $(CLNFILES)";\
rm -f $ (CLNFILES)

The $ (CLNF I LE S) macro is expanded just before the command
line is executed. Macros that have test operators are expanded
during the parsing of the command line. This means that the order
of macros that have test operators is significant, which is unlike
the normal behavior of macros that do not have test operators.
Normal macros are expanded after all description files have been
read and command line execution has begun. Expansion of mac­
ros that have test operators can be delayed by prefixing more $
characters, just as can be done with normal macros.

In the example above, notice that $ (CLNFILES: V) does not
appear in front of each line. This is because a single command
line was used, and that command line was spread over two lines,
with the newline escaped by the backslash (\) character. If there
had been multiple command lines, each command line would have
to have been preceded by a $ (CLNFILES : V) macro.

Global Macros
This version of make provides special handling of user-defined
macros that begin with G • Such macros are automatically ex­
ported to the environment, So they can be easily passed to subordi­
nate invocations of make.

February, 1990
Revision C

19

make(1) make(l)

20

Default Macro Values
This version of make supports a default expansion value for non­
existent or null-valued macros. The default value is specified as
shown below:

$ (XYZ: : default)

In this case, if the macro XYZ is not defined or has a null value, it
is expanded to de fa ul t. The default value is restricted to a sin­
gle word, so the following example will not have the intended
result

$(XYZ::This is the default)

Instead, XYZ is expanded to This. But the following example
will work:

DEFAULT = This is the default

all:
@echo "$(NOTDEFINED::$(DEFAULT))"

Pattern Matching on Macros
This version of make supports limited shell-style pattern matching
on macros. For example,

cc -0 $@ $(>:=*.0)

Each word in the expanded > macro is tested (shell-style) against
the asterisk (*) pattern and compiled on a match.

Attributes
This version of make understands attributes, which can be placed
before or after the dependents in a dependency list as shown
below:

target: [attributes] [dependents] [attributes]

Attributes can be any of:

. FAKE
If the target exists and has no dependents, the normal
behavior of rna ke for single-colon dependency statements is
to do nothing. The addition of the . FAKE attribute to the
dependency statement requires make to treat the target is if it
did not exist. This, in turn, forces make to execute the asso­
ciated commands .

. CURTIME
This attribute causes make to use the current time rather

February, 1990
RevisionC

make(l) make(l)

than the most recent modification time of the target, even if
the target does not exist. This attribute is used with the
• FAKE attribute to prevent the associated dependency state­
ment from being invoked unless the dependents have been
up-dated with a newer time .

. MAIN
The normal behavior of make when invoked without a target
name on the command line is to search the description file for
the first target, process the target, and then terminate. The
addition of . MAIN to a dependency statement causes make
to treat the associated dependency statement as if it were the
first dependency statement in the description file .

• PRE
This attribute informs rna ke that the associated target is to
be made before any others, including . MAIN. Hence, this
attribute can be used to place initialization commands. Be­
cause the entire description file is read before the targets are
processed, the placement of this attribute is position­
independent within the description file .

. POST
This attribute informs make that the associated target is to
be processed after all others. Hence, this attribute can be
used to place cleanup commands .

• KEEPTIME
This attribute causes make to maintain the target's original
modification time, even after the target has been regenerared .

• OLDTIME
This attribute causes make to ignore the target's
modification time and apply a modification time of 0 for the
purpose of determining if the target should be up-dated.
After the target is regenerated, rna ke sets the correct
modification time .

. NOVPATH
This attribute causes make to ignore the $VPATH macro for
the associated target.

If targets that have . MAIN, • PRE, and . POST attributes are
dependents of other targets, the targets are made in the order dic­
tated by the dependencies and not by the attributes.

February, 1990
Revision C

21

make(l) make(l)

22

Attributes on double-colon dependency statements apply to all of
them as a unit.

Libraries
If a target or dependency name contains parentheses, it is assumed
to be an archive library, the string within parentheses referring to a
member within the library. Thus lib(file.o) and
$ (LIB) (file. 0) both refer to an archive library that contains
file. o. (This assumes the LIB macro has been previously
defined.) The expression $ (LIB) (filel. 0 file2. 0) is not
legal. The built-in rules pertaining to archive libraries have the
form . suffix. a where suffix is the suffix from which the archive
member is to be made. An unfortunate by-product of the current
implementation requires suffix to be different from the suffix of
the archive member. Thus, one cannot have lib (file. 0)
depend upon file. 0 explicitly. The most common use of the ar­
chive interface follows. Here, we assume the source files are all C
type source:

lib:

.c.a:

lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

$(CC) -c $ (CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

In fact, the . c. a rule listed above is built into make and is un­
necessary in this example. A more interesting, but more limited
example of an archive library maintenance construction follows:

lib:
lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) -c $ (CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $?
@echo lib is now up-to-date

. c. a:;

Here the substitution mode of the macro expansions is used. The
$? list is defined to be the set of object file names (inside 1 ib)
whose C source files are out-of-date. The substitution mode
translates the .0 to • c. (Unfortunately, one cannot as yet
transform to . c-; however, this may become possible in the fu­
ture.) Note also, the disabling of the . c . a: built-in rule, which

February, 1990
RevisionC

make(1) make(l)

would have created each object file, one by one. This particular
construct speeds up archive library maintenance considerably.
This type of construct becomes very cumbersome if the archive li­
brary contains a mix of assembly programs and e programs.

MakeFile Pre- and Post-Processing
If, by its search rules, make finds a description file named
MakeFile or SCCS/s.MakeFile, the files
/usr/lib/MakeFilePreand/usr/lib/MakeFilePost,
if present, are read. If, for example, the description file is named
x. mk and the -P flag option is specified, make will read
/usr/lib/x.mkPre and /usr/lib/x.mkPost, if present.

The pre- and post-processing files are description files that can be
used to store global environmental settings and rules for events
that the user would like to occur prior to and after processing of a
description file.

If the macro G SGS ROOT is present in the environment, make
considers this to be- the root for finding the pre- and post­
processing files. For example, if G SGS ROOT is set to
newroot, make will look for the pre- and pOst-processing files
in the directory /newroot /usr / lib.

sees File Handling
As described in "Description Files" above, make can check-out
read-only copies of make file, Makefile, or MakeFile from
an sees version of the file in the current directory or an sees
version of the file located in a subdirectory named sees. This
ability is separate from the built-in rules that govern the check-out
of sees versions of dependents and is not turned off by the - r
flag option to make.

The built-in rules for dependents can only check-out a file for
which there is an sees version in the current directory; the built­
in rules cannot check-out an sees version of a file located in a
subdirectory named sees.
If the -g option is used, however, and the file does not exist in the
current directory, make will first use its built-in rules to check-out
the file in the current directory. If this attempt fails because the
sees version does not exist, the -g flag option causes make to
again search the current directory and then a subdirectory named
sees, if present, and check out the file if found. Note that the
current directory is searched twice, once by the built-in rules and
once because the -g flag option was specified. Searching the

February, 1990
Revision C

23

\

make(l) make(l)

24

current directory makes the -g flag option especially useful with
the -r flag option. The -r flag option turns off the built-in rules,
and, thus, when used with the -g flag option, the current directory
is search just once.

If a VPATH variable is present and set, the built-in rules are used
to search the specified directories for sees versions of the file. If
the -g flag option is specified, any subdirectories named sees in
the VP AT H directories are also searched.

The built-in rules for checking out dependents from their sees
versions in the current directory are not used to process include
files (see "Include Files" above). If the include file exists only in
its sees version in the current directory, make will not check it
out. If make is invoked with the -g flag option, however, make
will check out an include file if it is present in an sees version in
the current directory or in a subdirectory named sees.
In no case does make check out a copy of a description file, an in­
clude file, or a dependent file if the file already exists.

If a file is checked out by the built-in rules, make does not remove
the checked out copy. If a file is checked out by the action of the
-g flag option, the checked-out copy is automatically removed
when no longer needed.

Error Handling
Shell commands that return a nonzero status normally terminate
make. This behavior can be modified in a number of ways:

-i If present on the command line, this flag option causes make
to ignore any nonzero status that is returned by a shell com­
mand and to continue processing the current description file .

. IGNORE:
See "Built-in Targets".

-k If present on the command line, this flag option causes make,
to abandon work on the current target if a shell command re­
turns a nonzero status. make will continue work on other
targets in the description file that do not depend on the target
for which the error was received.

If prepended to any shell command, make will not terminate
on an error that might occur as a result of executing the com­
mand, but will continue processing the description file. The
- can be combined with the previously described @ symbol,
which suppresses the printing of the command before it is

February, 1990
RevisionC

make(l) make(l)

passed to the shell. The combination can be either -@ or @ -.

Both error messages returned by the shell and make's stan­
dard error messages are still printed.

As mentioned earlier, make removes a target and its dependents
when a quit or interrupt signal is received. The following condi­
tions apply:

I) The dependency statement must be a single-colon
dependency statement. If the dependency statement is a
double-colon dependency statement, make does not re­
move files.

2) The target must have existed before processing of the
dependency statement began.

3) The target is not a dependent of the built-in target
. PRECIOUS: .

4) make was not invoked with the -n flag option.

5) make was not invoked with the -t flag option.

The standard termination message due to a nonzero status code is
shown below. In this case, make terminates because the descrip­
tion file, x . mk, does not exist in the directory / di r.

$ make -f x.mk
Make: Cannot read description file /dir/x.mk
Make: Stopped in directory /dir.

FILES
/bin/make
/ u s r / 1 ib / description-filep re
/usr / lib/ description-filePost
$HOME/[Mm]akecornm
[Mm]akecornm
s. [Mm] ake [Ff] ile
SCCS/s. [Mm]ake[Ff]ile

SEE ALSO
cc(1), cd(l), csh(1), ksh(l), lex(1), sh(l), touch(l),
yacc(l), printf(3S), sccsfile(4).

"make Reference" in AIUX Programming Languages and Tools,
Volume 2.

February,1990
Revision C

25

make(l) make(l)

BUGS
The syntax (lib (filel. 0 file2. 0 file3. 0) is illegal.

You cannot build lib (file. 0) from file. o.

The macro $(a: .0=. c-) does not work.

26 February, 1990
RevisionC

makedev(l) makedev(l)

NAME
makedev - prepare troff description files

SYNOPSIS
makedev files

DESCRIPTION
makedev reads description files about a particular device and
converts them into a form suitable for reading by troff(l). In­
put to makedev is in the format described in font(5).

FILES
/usr/bin/makedev

SEE ALSO
troff(l), font(5).
A Typesetter-Independent troff, Brian W. Kernighan (Bell La­
boratories, 1982).
Adventures with Typesetter-Independent troff, Mark Kahrs and
Lee Moore (University of Rochester Technical Report 159, 1985).

February, 1990
Revision C

1

makekey(l) makekey(l)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
makekey improves the usefulness of encryption schemes
depending on a key by increasing the amount of time required to
search the key space. It reads 10 bytes from its standard input,
and writes 13 bytes on its standard output. The output depends on
the input in a way intended to be difficult to compute (i.e., to re­
quire a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII
characters. The last two (the salt) are best chosen from the set of
digits, ., /, and upper and lowercase letters. The salt characters
are repeated as the first two characters of the output. The remain­
ing 11 output characters are chosen from the same set as the salt
and constitute the output key.

The transformation performed is essentially the following: the salt
is used to select one of 4,096 cryptographic machines all based on
the National Bureau of Standards DES algorithm, but broken in
4,096 different ways. Using the input key as key, a constant string
is fed into the machine and recirculated a number of times. The
64 bits that come out are distributed into the 66 output key bits in
the result.

makekey is intended for programs that perform encryption (e.g.,
ed(l) and crypt(I». (The encryption scheme provided by them
is not secure.) Usually, makekey's input and output will be
pipes.

EXAMPLES

/usr/lib/makekey
abcdefgh23
23xq5GyrhLTCA

The first line invokes makekey, the second line is the input to
makekey, and the third is the new key generated by makekey.

FILES
/usr/lib/makekey

1 February, 1990
Revision C

makekey(l)

SEE ALSO
crypt(I), ed(I), ex(I), passwd(4).

February, 1990
Revision C

makekey(l)

2

man(l) man(l)

NAME
man - display the named manual page entries

SYNOPSIS
man [-c] [-d] [-Tterm] [-w] [section] name [section name ...]

DESCRIPTION

1

man locates and prints an entry in the A/UX Command Reference,
the A/UX System Administrator's Reference, or the A/UX
Programmer's Reference. The name of the entry is entered in
lowercase. The section number may not have a letter suffix. If no
section is specified, the whole manual is searched for name and all
occurrences of it are printed.

Note: If you specify a section number, only one section
can be searched at a time.

Flag options and their meanings are

-Tterm

-w

-d

-c

Prints the entry as appropriate for terminal type
term. For a list of recognized values of term, type
help term2. The default value of term is 450.

Prints on the standard output only the pathnames of
the entries, relative to /usr/catman, or to the
current directory for -d flag option.

Searches the current directory, rather than
/usr / catman; requires the full filename (for ex­
ample, cu. 1 c, rather than just cu).

Causes man to invoke col(1). Note that col(1) is
invoked automatically by man unless term is one of
the standard terminal types: 30 0, 30 0 s, 450, 37,
4000a,382,4014,tek,1620,orX.

man examines the environment variables $TERM and $PAGER
(see environ(5)) and attempts to select flag options that adapt
the output to the terminal being used. The $PAGER variable de­
faults to mo re if not set otherwise. The user may select pg with
the appropriate flag options. The -Tterm flag option overrides the
value of $TERM; in particular, one should use -TIp when sending
the output of man to a line printer.

section may be changed before each name.

February, 1990
RevisionC

man(1) man(l)

EXAMPLES
The command

man man

would reproduce this entry on the terminal, as well as any other
entries named man that may exist in other sections of the manual.

The command

man sync

searches through all sections to find the entry for sync. Since
there is a sync(l) and a sync(2), both entries are provided. If
you are looking only for the sync system call (found in section
2), specify the section number as follows:

man 2 sync

FILES
/usr/bin/man
/usr/catman/?_man/man[1-8]/*

SEE ALSO
term(4).

CAVEAT

preformatted
manual entries

The man command prints manual entries that were formatted by
nroff and are printed using the correct terminal filters as derived
from the -Tterm and $TERM settings. Typesetting or other non­
standard printing of manual entries is not supported.

February, 1990 2
Revision C

merge(l) merge(l)

NAME
merge - three-way file merge

SYNOPSIS
merge [-p]filel file2 file3

DESCRIPTION
me rge incorporates all changes that lead from file2 to file3 into
filel. The result goes to the standard output if -p is present, and
into filel otherwise. merge is useful for combining separate
changes to an original. Suppose file2 is the original, and both filel
andfile3 are modifications of file2. Then merge combines both
changes.

An overlap occurs if both filel and file3 have changes in a com­
mon segment of lines. me rge prints infonnation on how many
overlaps occurred and includes both alternatives in the result. The
alternatives are delimited as follows:

«««< filel
lines in filel

lines in file3
»»»> file3

If there are overlaps, the user should edit the result and delete one
of the alternatives.

DISCLAIMER
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN
47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
co(1), diff(I), diff3(1), rcsmerge(I).

1 February, 1990
Revision C

mesg(1) mesg(l)

NAME
mesg - pennit or deny messages

SYNOPSIS
mesg [choice]

DESCRIPTION
me s g pennits or denies receipt of messages sent by another user
via wri te(l). With no argument, mesg reports the current per­
mission state. The choice arguments may be either y or n.

mesg with choice n forbids messages by revoking nonuser write
pennission on the user's tenninal. mesg with argument y rein­
states pennission.

EXAMPLES
mesg y

changes the pennission to "yes" and the system reports:

Is Yes; Was No

or whatever is the current and former state of your message per­
mission.

FILES
/bin/mesg
/dev/tty*

SEE ALSO
talk(lN), wri te(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

February, 1990
Revision C

1

mkdir(l) mkdir(l)

NAME
mkdi r - make a directory

SYNOPSIS
mkdi r dirname ...

DESCRIPTION
mkdi r creates specified directories in mode 777 (possibly altered
by the user's umask (see sh(l), csh(l) and ksh(l». Standard
entries, ., for the directory itself, and .. , for its parent, are made
automatically. These and other directories beginning with . are
not visible in listings unless you use the -a flag option to 1 s.

mkdi r requires write permission in the parent directory.

EXAMPLES
mkdir letters

creates a directory letters as a subdirectory of the current
directory at the time you employ the command.

FILES
/bin/mkdir

SEE ALSO
chmod(l), csh(l), ksh(l), rm(l) , rmdir(l), sh(l).

DIAGNOSTICS

1

mkdi r returns exit code 0 if all directories were successfully
made; otherwise, it prints a diagnostic and returns nonzero.

February, 1990
RevisionC

mkshlib(l) mkshlib(l)

NAME
mkshlib - create shared library

SYNOPSIS
mkshlib -s specs [-n] -t target [-h host]

DESCRIPTION
mkshlib builds and maintains shared libraries. A shared library
is similar in function to a normal, non-shared library. The primary
differences appear at run time. The code in shared library routines
can be used by more than one program at the same time. The exe­
cutable code for a shared library, which is in the Common Object
File Format (COFF), is accessed from the applications that call
upon it by means of a special addressing structure provided within
them during link edit.

(In contrast to the shared library, each program that makes use of
a non shared library gets a private copy of any library routines re­
quired.)

The shared library consists of two files (two sublibraries) contain­
ing source archives and executable object files, referred to as the
host shared library and the target shared library, respectively. The
host and target sublibraries may be on different systems. A host
shared library is an archive which provides information used dur­
ing link-edit (see ld(1) and ar(4». The name of the host shared
library is included on the cc(l) command line in the same way as
a non-shared library (see cc(1». All operations that can be per­
formed on a non-shared library can be performed on a host shared
library.

The target shared library contains the executable code for all the
routines in the library and must be fully resolved. This library is
brought into memory, if not already present, during execution of a
program that calls upon it. The library is attached to a user's pro­
cess during execution. The text section of target objects is shared
by all processes using that target library, but each process gets its
own copy of data.

The user interface to mkshlib consists of command line argu­
ments and a shared-library specification file. The specification file
provides information necessary to build the host and target shared
libraries.

February, 1990
Revision C

1

mkshlib(l) mkshlib(l}

To build both sublibraries, provide both names. To build only the
target library, do not provide a host name. (However, a host li­
brary is required to access the target library via the link edit pro­
cess. Presumably, you either have a usable host library or will
build one separately.) The -n option may be used to have
mkshlib build only a new host shared library and reuse an exist­
ing target shared library. The name of the target library must be
supplied, even if only the host is to be built

To build the host and target files, mkshlib invokes other tools
such as the archiver, ar(I}, the assembler, as(I}, and the loader,
Id(1}.

FLAG OPTIONS

2

The following command-line arguments are recognized:

-s specs
Provide the name of the shared-library specification file,
specs, which contains the information necessary to build the
shared library. Its contents include a list of the object files to
be included in the shared library, the branch-table
specifications for the target library, the path name directing
where to install the target library, and the start addresses of
text and data sections for the target library. Initialization
specifications for imported variables are given in this file, if
necessary. Imported variables are addresses external to the
target shared library, such as the addresses of routines that
the library may call upon. Details on the shared-library
specification file are given after the command line arguments.

-t target
Specify the name, target, of the target shared library to be

C~~ produced. The location where the target library is to be in­
stalled is given in the specification file (see the #target
directive below).

-h host
Specify the name of the host shared library, host. If not
specified, then the host shared library is not produced.

-n Do not generate a new target shared library. This option is
used to update the host shared library only. The -t flag op­
tion and the target library name must still be supplied, be­
cause a version of the target shared library is needed to build
the host shared library.

February, 1990
RevisionC

mkshlib(l) mkshlib(1)

Shared Library Specification File
The specification file contains all the infonnation necessary to
build both the host and target shared libraries. The file contains
directive names and associated specification information. Direc­
tive names must be at the start of the line. Some directives have
specification infonnation on the same line, and some directives in­
troduce multiple specifications on following lines. Lines follow­
ing such a directive are interpreted as specification lines for that
directive, until another directive or the end of the file is encoun­
tered.

The six possible directive names and their use are described
below. Directives may be given in any order in the specification
file, except for the 4f ini t directive.

4f4f comment-text
Specifies that the remainder of the line is a comment. All
comment-text on that line is ignored. Comment lines may oc­
cur anywhere. Comments are optional, but recommended.

4faddress section-name address
Specify the start address in the virtual address space at which
to bind section-name of the target shared-library executable.
Typically, address directives are provided for the . text and
. da t a sections of the target library. Addresses must be on a
256 kilobyte (KB) boundary.

The . bss section is grouped with the . data section, and
does not require a start address.

4fbranch
branch-table-specification
branch-table-specification
branch-table-specification

All lines following the 4fbranch directive are interpreted as
branch-table specifications, until another directive is encoun­
tered. Only one 4fbranch directive can be in a specification
file. The branch table built from these specifications consists
of jump instructions to the specified functions.

Branch-table specification lines have the following format:

function-name position

February, 1990
RevisionC

3

mkshlib(l) mkshlib(l)

4

Only functions should be given branch-table entries, and
those functions must be external. The position value is the
relative location of the function name in the branch table.
Each function-name may appear only once. The value of po­
sition for each function-name given is the position (or posi­
tion range) of the name in the branch table. The value of po­
sition is a single integer, or a range of integers of the form
positioni-position2. (The use of a position range is given
later.) Position values start with 1, each position value may
be used only once, and all position values from 1 to the
highest value used must be accounted for.

When adding functions to an existing library, provide the
new functions at higher positions than in the existing branch
table. Changing positions in an existing branch table renders
that shared library not usable by previously linked applica­
tions.

A position range may also be used to reserve empty slots in
the branch table for later use. Only the highest value of the
range is associated with the function name. The remaining
positions in the range may be used later for other functions.

#" ini t object
initialization
initialization
initialization

Specify object with the name of an object file that requires in­
itialization code (because it uses an imported variable). Each
object file that requires initialization must be specified. (If
the shared library being built is completely self-contained
(uses no imported variable), then no *" ini t directive is used,
because no initialization code is necessary.)

All #"init directives must be placed after the #"objects
directive and its associated specifications in the specification
file.

An #"init directive is followed by one or more initialization
specification lines pertaining to the object file, object, named
in the directive. Each line following the directive is interpret­
ed as a specification line until another directive is encoun-

February, 1990
RevisionC

mkshlib(1) mkshlib(l)

teredo Specify each line of initialization by using the follow­
ing format:

import importptr

The placeholder import refers to an imported variable, and
importptr is a pointer defined within the object file named in
the i ini t directive preceding the initialization line. For
each initialization line so specified, initialization code is gen­
erated in the form:

importptr = &import;

in which the value of impo rt pt r is set to the absolute ad­
dress of impo rt.

iobjects
file
file
file

Specify each entry of file with the names of the object files
constituting the target shared library.

This directive can be specified only once per shared library
specification file. The lines following the directive are inter­
preted as specifications of file until another directive is en­
countered.

itarget pathname
Specify the absolute pathname for the location of the target
shared library on the target system. This pathname is copied
into a. out files, and tells the operating system where to find
the target shared library when executing a file that uses it.
The maximum length for pathname is 64 characters.

FILES
/usr/bin/mkshlib
/lib/* s.a
/shlib7* s
/ tmp / uniqUe-name

February, 1990
Revision C

Host (archive) library
Target (executable) library
Temporary directory (name is PID and
time)

5

mkshlib(l) mkshlib(l)

SEE ALSO
ar(1), as(1), cc(1), Id(I), a. out(4), ar(4).
"Shared Libraries," in A/UX Programming Languages and Tools,
Volume I.

6 February, 1990
RevisionC

mkstr(1) mkstr{l)

NAME
mkstr - create an error message file by massaging C source

SYNOPSIS
mkstr [-] message file prefixfile ...

DESCRIPTION
mkstr is used to create files of error messages. Using it can
make programs with large numbers of error diagnostics much
smaller. and reduce system overhead in running the program as
the error messages do not have to be constantly swapped in and
out.

mkstr will process each of the specified files, placing a massaged
version of the input file in a file whose name consists of the
specified prefix and the original name.

To process the error messages in the source to the message file
mkstr keys on the string error (" in the input stream. Each
time it occurs, the C string starting at the n is placed in the mes­
sage file followed by a newline character and a null character; the
null character terminates the message so it can be easily used
when retrieved, the newline character makes it possible to sensibly
ca t the error message file to see its contents. The massaged copy
of the input file then contains a lseek pointer into the file which
can be used to retrieve the message, i.e.:

char efilname[] = "/usr/lib/pi_strings";
int efil = -1;

You have to write the error-handling function yourself. The fol­
lowing is an example:

error(a1, a2, a3, a4)
{

oops:

February, 1990
Revision C

char buf[256];
if (efil < 0) {

efil = open(efilname, 0);
if (efil < 0) {

perror(efilname);
exit(l);

if (lseek(efil, (long) a1, 0) < OL
I I read(efil, buf, 256) <= 0)

1

mkstr(1) mkstr(l)

goto oops;
printf(buf, a2, a3, a4);

The optional - causes the error messages to be placed at the end
of the specified message file for recompiling part of a large
mkstred program.

EXAMPLES
If the current directory has files a. c and b. c, then

mkstr exs x *.c

would create a new file exs which holds all the error messages
extracted from the source files a. c and b. c, as well as two new
source files xa . c and xb. c which no longer contain the extract­
ed error messages.

FILES
/bin/mkstr

SEE ALSO
cc(l), xstr(l), lseek(2).

BUGS

2

All the arguments except the name of the file to be processed are
unnecessary .

February, 1990
RevisionC

rom(l) rom(l)

NAME
rom - format documents that contain nroff and mm formatting
requests rom macros

SYNOPSIS
rom [-Ttty-type] [-12] [-c] [-e] [-t] [-E] [file ...]

DESCRIPTION
Use rom to format documents using nroff and the rom(5) text­
formatting macro package. It has options to specify preprocessing
by tbl(l) or eqn/neqn (see eqn(l) and neqn(1)) and postpro­
cessing by various terminal-oriented output filters. The proper
pipelines and the required arguments and flags for nroff and rom
are generated, depending on the options that you select.

Options for rom are given below. Any other arguments or flags
(for example, -rC3) are passed to nroff as appropriate. You
may use such options in any order, but you must put them before
the files arguments. If you do not specify arguments, rom prints a
list of its options.

-Ttty-type Specifies the type of output terminal; Here is a list of
recognized values for tty-type.

450 prepares output for a DASI 450 (de­
fault for rom; also equivalent to -
T1620).

450-12 prepares output for a DASI 450 in 12-
pitch mode.

30 0 prepares output for a DASI 300 termi­
nal.

300-12 prepares output for a DASI 300 in 12-
pitch mode.

3005 prepares output for a DASI 300S.

3005-12 prepares output for a DASI 300S in
12-pitch mode.

4 014 prepares output for a TEKTRONIX
4014.

37 prepares output for a TELETYPE+
Model 37 (default for nroff).

382 prepares output for a DTC-382.

February, 1990 1
Revision C

rom(l)

4000a

x

hp

40/4

745

2631

2631-e

2631-c

832

8510

tn300

Ip

2

mm(l)

prepares output for a TRENDATA
4000A.

prepares output for an EBCDIC line
printer.

prepares output for a Hewlett-Packard
HP262x or HP264x (implies -c); also
equivalent to -T2621, -T2640, and
- T 2645. 43 prepares output for a
1ELETYPE Model 43 (implies -c).

prepares output for a 1ELETYPE
Model 40/4 (implies -c). also
equivalentto -T 40/4.

prepares output for a Texas Instrument
700 series terminal (implies -c); also
equivalentto -T735.

prepares output for a HP2631 printer
(implies -c).

same as -T2631, but in expanded
mode.

same as -T2631, but in compressed
mode.

prepares output for an Anderson Jacob­
son 832 printer (implies -c).

prepares output for a C. Itoh printer
(implies -c).

prepares output for a Terminet 300
printer (implies -c).

prepares output for a device with no re­
verse or partial line motions or other
special features (implies -c). If you
do not use this option, mm uses the
value of the shell variable $ TERM from
the environment (see profile(4) and
environ(5» as the value of tty-type,
if $ TERM is set; otherwise, mm uses
450 as the value of tty-type. If you
specify several terminal types, the last
one takes precedence.

February, 1990
RevisionC

rom(l) rom(l)

-12 Indicates that the document is to be produced in 12-
pitch. May be used when $ TERM is set to one of
300, 300s, 450, and 1620. (The pitch switch on
the DASI 300 and 300s terminals must be manually
set to 12 if this option is used.)

-c

-e

-t

-E

Causes rom to invoke col(I); note that col(l) is in­
voked automatically by rom unless term is one of
300, 300s, 450, 37, 4000a, 382, 4014, tek,
1620, or X.

Causes rom to invoke neqn; also causes neqn to
read the /usr /pub/ eqnchar file (see
eqnchar(5».

Causes rom to invoke tbl(l).

Invokes the -e option of nroff.

As an example (assuming that the shell variable $TERM is set in
the environment to 450), the two command lines below are
equivalent:

rom -t -rC3 -12 file
tbl fik I nroff -cm -T450-12 -h -rC3

rom reads the standard input when - is specified instead of any
filenames. (Mentioning other files together with - leads to disas­
ter.) This option allows rom to be used as a filter, for example:

cat file I rom -

HINTS
1. rom invokes nroff with the -h flag. With this flag, nroff

assumes that the tenninal has tabs set every 8 character posi­
tions.

2. Use the -olist option of nroff to specify ranges of pages to
be output. Note, however, that rom, if invoked with one or
more of the -e, -t, and - options, together with the -olist
option of nroff may cause a hannless "broken pipe" diag­
nostic if the last page of the document is not specified in list.

3. If you use the -s option of nroff (to stop between pages of
output), use linefeed (rather than return or newline) to restart
the output. The -s option of nroff does not work with the
-c option of rom, or if rom automatically invokes cOl(l) (see
-c option earlier).

February, 1990
Revision C

3

nun(l) nun(l)

4. If you lie to nun about the kind of terminal its output will be
printed on, you will get (often subtle) garbage; however, if
you are redirecting output into a file, use the -T 3 7 option,
and then use the appropriate terminal filter when you actually
print that file.

FILES
/bin/nun
/usr/pub/terminals

SEE ALSO
checknun(l), col(1), env(l), eqn(l), greek(1), nunt(l),
nroff(l), tbl(1), troff(1), profile(4), nun(5), term(5).
"nun Reference" in A/UX Text Processing Tools.

DIAGNOSTICS
nun

4

"nun: no input file" if none of the arguments
is a readable file and nun is not used as a filter.

February, 1990
RevisionC

mmt(1) mmt(l)

NAME
mmt - typeset documents

SYNOPSIS
mmt [-a] [-e] [-t] [-p] [-g] [-Ttty-type] [-Ddest] [-z] rJile . ..]

DESCRIPTION
mmt is very similar to mm(I), except that it typesets its input via
t ro f f (1) as opposed to formatting it via nro f f (1). mmt uses
the mm macro package and has options to specify preprocessing by
tbl(I), pic(I), eqn{l), or grap(I). The proper pipelines and
the required arguments and flags for troff(l) and for the macro
packages are generated, depending on the options selected.

FLAG OPTIONS
The flag options are given below. Any other arguments or flags
are passed to troff(1). Such options can occur in any order, but
they must appear before file. If no arguments are given, mmt
prints a list of its options.

-a Send the output to an ASCn terminal.

-e Invoke eqn(1) and cause eqn to read the
/usr /pub/ eqnchar file (see eqnchar(5)).

-t Invoke tbl(I).

-p Invoke pic(1).

-g Invoke grap(I), which in turn calls pic(I).

-Ttty-type Create output for troff device tty-type (see

-Ddest

-z

troff(l)). The output is sent through the appropri­
ate postprocessor (see daps(I)).

Direct to output via device dest. The currently sup­
ported value for dest is: 4014 (TEKTRONIX 4014
terminal via the tc{l) filter).

Invoke no output filter to process or redirect the out­
put of troff(I).

mmt reads the standard input when - is specified instead of any
filenames.

HINT
Use the -olist option of troff(1) to specify ranges of pages to
be output. Note, however, that these commands, if invoked with
one or more of the -e, -t, -p, -g, and - options, together with
the -oUst option of troff(1), may cause a harmless "broken

February, 1990
Revision C

1

mmt(l) mmt(l)

pipe" diagnostic if the last page of the document is not specified
in list.

FILES
/bin/mmt

SEE ALSO
daps(I), env(I), eqn(l), mm(1), nroff(I), pic(1), tbl(I),
tc(I), troff(I), profile(4), environ(5), mm(5), mv(5).

AIUX Text Processing Tools.

DIAGNOSTICS

2

The message "mmt: no input file" is reported if none of
the arguments is a readable file and the command is not used as a
filter.

February, 1990
RevisionC

more(1) more(l)

NAME
more, page - show the contents of a file in display-size chunks

SYNOPSIS
more [-c] [-d] [-f] [-1] [-n] [-s] [-u] [+linenumber]
[name .. .]

more [-c] [-d] [-f] [-1] [-n] [-s] [-u] [+/pattern] [name ...]

page more-arguments

DESCRIPTION
mo re is a filter which allows examination of continuous text one
screenful at a time on a CRT terminal. It normally pauses after
each screenful, printing --More-- at the bottom of the screen.

page functions similarly, except that the screen is cleared before
each screenful is displayed (but only if a full screenful is
displayed), and that k-I rather than k-2 lines are printed in each
screenful, where k is the number of lines the terminal can display.

If the user then presses RETURN, one more line is displayed. If the
RETURN is preceded by an integer, that number becomes the new
window size. If the user hits a space, another screenful is
displayed. If a space is preceded by an integer, that number of
lines is displayed. If the user presses d or CONTROL-D, 11 more
lines (usually half a screenfu!) are displayed (a "scroll"). If d or
CONTROL-D is preceded by an integer, that number becomes the
new scroll size.

more looks in the file / etc/termcap to determine terminal
characteristics and to determine the default window size. On a
terminal capable of displaying 24 lines, the default window size is
22 lines.

more looks in the environment variable MORE to preset any flags
desired. For example, if you prefer to view files using the -c
mode of operation, the sh command sequence

MORE='-c'; export MORE

or the csh command

setenv MORE -c

would cause all invocations of mo re, including invocations by
programs such as man and msgs, to use this mode. (Note, how­
ever, that the man command also looks at the PAGER environment
variable; see man(1).) Normally, the user will place the command

February, 1990
Revision C

1

more(1) more(l)

2

sequence that sets up the MORE environment variable in the shell
startup file . login, . profile, or . cshrc.

If mo re is reading from a file rather than a pipe, then a percentage
is displayed along with the --More-- prompt. This gives the
fraction of the file (in characters, not lines) that has been read so
far.

The following flag options are available.

-n An integer which is the size (in lines) of the window which
mo re will use instead of the default.

-c Causes mo re to draw each page by beginning at the top of the
screen and erasing each line just before it draws on it. This
avoids scrolling the screen, making it easier to read while
more is writing. This flag option will be ignored if the termi­
nal does not have the ability to clear to the end of a line.

-d Causes mo re to prompt the user with the message

Hit space to continue, Rubout to abort

at the end of each screenful.

-f Causes more to count logical lines, rather than screen lines;
that is, long lines are not folded. This flag option is recom­
mended if nroff output is being piped through ul, since the
latter may generate escape sequences. These escape se­
quences contain characters which would ordinarily occupy
screen positions, but which do not print when they are sent to
the terminal as part of an escape sequence. Thus mo re may
think that lines are longer than they actually are, and, there­
fore, fold lines erroneously.

-1 Causes more not to treat CONTROL-L (form feed) as special.
If this flag option is not given, more will pause after any line
that contains a CONlROL-L, as if the end of a screenful had
been reached. Also, if a file begins with a form feed, the
screen will be cleared before the file is printed.

-s Squeezes multiple blank lines from the output, producing only
one blank line. Especially helpful when viewing nroff out­
put, this flag option maximizes the useful information present
on the screen.

-u Suppresses normal processing of underlining. more will han­
dle underlining such as produced by nroff in a manner ap­
propriate to the particular terminal; if the terminal can perform

February, 1990
RevisionC

more(l) more(l)

underlining or has a stand-out mode, more will output ap­
propriate escape sequences to enable underlining or use
stand-out mode for underlined information in the source file.

+linenumber
Causes more to start up at linenumber.

+/pattern
Causes mo re to start up two lines before the line containing
the regular expression pattern, if the input is from a file. If in­
put is from a pipe, more starts on the line where the pattern
was found.

Once inside more, other sequences may be typed when more
pauses. The sequences and their effects are as follows (i is an op­
tional integer argument, defaulting to 1) :

Displays the current line number.

v Starts up the editor vi at the current line (does not work if the
input to the program is from a pipe).

h Help command; gives a description of all the more com­
mands.

i:n

i:p

Skips to the ith next file given in the command line. (Skips to
last file if i doesn't make sense.)

Skips to the ith previous file given in the command line. If
this command is given in the middle of printing out a file, then
more goes back to the beginning of the file. If i doesn't make
sense, mo re skips back to the first file. If mo re is not reading
from a file, the bell rings and nothing more happens.

: f Displays the current filename and line number.

:qor :Q
Exits from more (same as q or Q).

Repeats the previous command.

iz Same as typing a space except that i, if present, becomes the
new window size.

is Skips i lines and prints a screenful of lines.

if Skips i screenfuls and prints a screenful of lines.

February, 1990
Revision C

3

more(l) more(l)

4

in Searchs for the ith occurrence of the last regular expression
entered.

q or Q
Exits from mo re. The interrupt character may also be used.

i/expr
Searches for the ith occurrence of the regular expression expr.
Terminated either by pressing RETURN or the EsCAPE key. If
the input is a file (rather than a pipe), and there are fewer than
i occurrences of expr, then the position in the file remains un­
changed and an error message is printed. If the input is a file
(rather than a pipe), and there are at least i occurrences of
expr, a screenful is displayed, starting two lines before the
place where the expression was found. If the input is a pipe
and there are fewer than i occurrences of expr, an error mes­
sage is printed and more exits (because the entire input
stream has been read). If the input is a pipe and there are at
least i occurrences of expr, a screenful is displayed, starting
on the line where the expression was found. The user's erase
and kill characters may be used to edit the regular expression.
Erasing back past the first column cancels the search com­
mand.

Goes to the point from which the last search started. If no
search has been performed in the current file, this command
goes back to the beginning of the file. (Doesn't work if the in­
put to the program is from a pipe.)

!command
Invokes a shell with command. Terminated either by pressing
RETURN or the EsCAPE key.

Up to the time when the command character itself is given, the
user may hit the line kill character to cancel the numerical argu­
ment being formed. In addition, the user may hit the erase charac­
ter to redisplay the --More--(xx%) message.

: !command
Invokes a shell with command. (Same as ! command).

CONlROL-L CL)
The user may redraw the screen by pressing CONlROL-L
CL). (This doesn't work if the input to the program is from a
pipe.)

February, 1990
RevisionC

more(l) more(l)

Any time output is being sent to the terminal, the user may press
the quit key (normally CONlROL-\). more will stop sending out­
put, and will display the usual --More-- prompt. The user may
then enter one of the commands in the normal manner. Unfor­
tunately, some output is lost when this is done, due to the fact that
any characters waiting in the terminal's output queue are flushed
when the quit signal occurs.

The terminal is set to noecho mode by this program so that the
output can be continuous. What is typed will not show on the ter­
minal, except for the / and ! commands.

If the standard output is not a terminal, then mo re acts just like
cat, except that a header is printed before each file (if there is
more than one).

EXAMPLES
nroff -ms +2 doc.n I more

would show the nroff output on the terminal screen.

FILES
/bin/more
/bin/page
/etc/termcap
/usr/lib/more.help

SEE ALSO
cat(l), pg(l), termcap(4), terminfo(4).

February, 1990
RevisionC

5

mt(l) mt(l)

NAME
mt - magnetic tape manipulating program

SYNOPSIS
mt [-fdevice-file] command [count]

DESCRIPTION

1

mt is used to give commands to a magnetic tape drive. If device­
file is not specified using the -f flag option, the environment vari­
able TAPE is used; if TAPE does not exist, mt uses the device
/ dev / rmt 12. Note that special-file must reference a raw (not
block) tape device. By default, mt performs command once.
command may be performed more than once by supplying a
count.

command may be anyone of the following set of commands.
Only as many characters as are required to uniquely identify a
command within the set need be specified.

eof, weof
Write count end-of-file marks at the current position
on the tape.

f sf Forward space count files.

f s r Forward space count records.

bsf Backspace count files.

bsr Backspace count records.

rewind Rewind the tape (count is ignored).

offline, rewoffl
Rewind the tape and place the tape unit off-line
(count is ignored).

format Format a tape cartridge (count is ignored). This only
applies to / dev / rmt / t ex [n] device files that
represent the Apple SC 40 Tape Backup.

status Print status information about the tape unit.

mt returns a 0 exit status when count invocations of command are
successful, 1 if command was unrecognized, and 2 if any invoca­
tion of command failed.

February, 1990
Revision C

mt(l)

FILES
/dev/rmt/*

SEE ALSO
mtio(4), dd(l), ioctl(2), environ(7).

February, 1990
Revision C

mt(l)

2

mv(l) mv(l)

NAME
mv - move or rename files

SYNOPSIS
mv [-i] [-f] [-]file1 file2

mv [-i] [-f] [-] file ... directory

DESCRIPTION
mv moves (changes the name of)file1 tofile2.

If file2 already exists, it is removed before file1 is moved. If file2
has a mode which forbids writing, mv prints the mode (see
chmod(2» and reads the standard input to obtain a line; if the line
begins with y, the move takes place; if not, mv exits.

In the second form, one or more files (plain files or directories) are
moved to the directory with their original file-names.

mv refuses to move a file onto itself.

FLAG OPTIONS
The following flag options are interpreted by mv:

- i stands for interactive mode. Whenever a move is to super­
cede an existing file, the user is prompted by the name of the
file followed by a question mark. If he answers with a line
starting with y, the move continues. Any other reply
prevents the move from occurring.

- f stands for force. This flag option overrides any mode restric­
tions or the - i flag option.

means interpret all the following arguments to mv as file
names. This allows file names starting with minus.

FILES
/bin/mv

SEE ALSO
cp(1),ln(1).

BUGS

1

Iffile1 andfile2 lie on different file systems, mv must copy the file
and delete the original. In this case the owner name becomes that
of the copying process and any linking relationship with other files
is lost.

February, 1990
Revision C

rnvt(1) rnvt (1)

NAME
rnvt - typeset view graphs and slides

SYNOPSIS
rnvt [-a] [-e] [-t] [-p] [-g] [-Ttty-type] [-Ddest] [-z] [file . ..]

DESCRIPTION
This command is very similar to mrnt(I), except that it typesets its
input with the rnv macro package for view graphs and slides. rnvt
has options to specify preprocessing by tbl(l), pic(I), eqn(I),
grap(I). The proper pipelines and the required arguments and
flags for troff(l) and for the macro package are generated,
depending on the options selected.

FLAG OPTIONS
The flag options specific to rnvt are given below. Any other argu­
ments or flags are passed to troff(l). Options can occur in any
order, but they must appear before file. If no arguments are given,
rnvt prints a list of its options.

-a Send the output to an ASCn terminal.
-e Invoke eqn(l) and cause eqn to read the

-t
-p
-g
-Ttty-type

-Ddest

-z

/usr/pub/eqnchar file (see eqnchar(5)).
Invoke tbl(l).
Invoke pic(l).
Invoke grap(I), which in tum calls pic(I).
Create output for troff device tty-type (see
troff(l)). The output is sent through the appropri­
ate postprocessor (see daps(l)).
Direct to output via device dest. The currently sup­
ported values for dest are: 4 014 (TEKTRONIX
4014 terminal via the tc(l) filter).
Invoke no output filter to process or redirect the out­
put of troff(I).

rnvt reads the standard input when - is specified instead of any
file names.

HINT
Use the -olist option of troff(l) to specify ranges of pages to
be output. Note, however, that these commands, if invoked with
one or more of the -e, -t, -p, -g, and - options, together with
the -olist option of troff(I), may cause a harmless "broken
pipe" diagnostic if the last page of the document is not specified
in list.

February, 1990
Revision C

1

mvt(1) mvt(1)

FILES
/bin/mvt

SEE ALSO
daps(1), env(1), eqn(1), mrn(1), mrnt(1), nroff(1), pie(1),
tbl(1), te(1), troff(l), profile(4), environ(5), mrn(5),
mv(5).

AIUX Text Processing Tools.

DIAGNOSTICS

2

The message "mvt: no input file" is reported if none of
the arguments is a readable file and the command is not used as a
filter.

February, 1990
RevisionC

ndx(l) ndx(l)

NAME
ndx - create a subject-page index for a document

SYNOPSIS
ndx subjfile Jormatter-command-line

DESCRIPTION
ndx, given a list of subjects (subjfile), searches a specified docu­
ment and writes a subject-page index to the standard output.

subjfile is the list of subjects to be included in the index. Each
subject must begin on a new line and have the following format.

word1 [word2 ...] [, wordn ...]

Some examples are:

printed circuit boards
arrays
arrays, dynamic storage
Smith, w. p.
printed circuit boards, channel-oriented
Aranoff
University of Illinois
PL/I

The subject must start in column 1.

The syntax for formatter-command-line is

formatter [option(s)] file (s)

This is the command that is used to create the final form of the do­
cument. The following are examples of valid formatter command
lines:

rom -TIp files
nroff -rom -TIp -rW60 file
troff -rB2 -Taps -rOl.5i fiks

For more information about the formatter command line, see
rom(I), romt(l), nroff(l), and troff(1).

The document must include formatting commands for rom,
nroff, or troff. The formatter command line tells ndx
whether troff, nroff, rom, or romt would be used to produce
the final version of the document.

troff or romt Specify troff as the formatting program.

February, 1990 1
Revision C

ndx(l) ndx(l)

nroff or mm Specify nroff as the formatting program.

The options are those that would be given to the troff, nroff,
mm, or mmt command in printing the final form of the document
and are necessary to determine the correct page numbers for sub­
jects as they are located in the document. ndx does not actually
cause the final version of the document to be printed. The author
must create the document separately. The indexer, of course,
should not be used until the document is complete and no further
changes are expected.

EXAMPLES
The command

ndx subjfile "nroff -mm -rW70 files" > indexfile

would produce a subject-page index for the document files and
take its subjects from the list, subjfile. The page numbers would
correspond to the document produced by

nroff -mm -rW70 files'"

The command
ndx subjfile "mm -rW60 -rN2 -rOO chl ch2 ch3" > indexfile

would produce a subject-page index for the documents chl, ch2,
and ch3. The page numbers would correspond to the documents
produced by

mm -rw60 -rN2 -rOO chl ch2 ch3

The command
ndx subjfile "traff -rB2 -rWSi -rOl.Si -mm files" > indexfile

would produce a subject-page index for the document file. The
page numbers would correspond to the document produced by

troff -rB2 -rW5i -rOl.5i -mm files

FILES
/usr/bin/ndx

SEE ALSO
mm(1), mmt(1), nroff(I), subj(I), troff(I).

2 February, 1990
RevisionC

neqn(1) neqn(1)

NAME
neqn - format mathematical text for nroff

SYNOPSIS
neqn [-dxy] [-pn] [-sn] [-fn] [-] [file ...]

DESCRIPTION
neqn is a preprocessor for typesetting mathematical text on
typewriter-like terminals. Normal usage is:

neqn [option] file I nroff [option] I [printer]

If you do not specify files (or if you specify - as the last argu­
ment), neqn reads the standard input.

Full details of use are given in eqn(I).

FILES
/bin/neqn

SEE ALSO
eqn(l), mm(I), nroff(I), tbl(I), eqnchar(5), mm(5).
"eqn Reference" inA/UX Text Processing Tools.

February, 1990
Revision C

1

netstat(lN) netstat(lN)

NAME
netstat - show network status

SYNOPSIS
netstat [-Aan] [-f address1amily] [system] [core]

netstat [-hirnnrs] [-f address-family] [system] [core]

netstat [-n] [-I interface] interval [system] [core]

DESCRIPTION
The netstat command symbolically displays the contents of
various network-related data structures. There are a number of
output formats, depending on the options for the information
presented. The first form of the command displays a list of active
sockets for each protocol. The second form presents the contents
of one of the other network data structures according to the option
selected. Using the third form, with an interval specified,
netstat will continuously display the information regarding
packet traffic on the configured network interfaces.

FLAG OPTIONS

1

The flag options have the following meaning:

-A With the default display, show the address of
any protocol control blocks associated with
sockets; used for debugging.

-a With the default display, show the state of all
sockets; normally sockets used by server
processes are not shown.

-h Show the state of the IMP host table.

-i

- I interface

-m

-n

Show the state of interfaces which have been
autoconfigured (interfaces statically configured
into a system, but not located at boot time are
not shown).

Show information only about this interface; used
with an interval as described below.

Show statistics recorded by the memory
management routines (the network manages a
private pool of memory buffers).

Show network addresses as numbers (normally
netstat interprets addresses and attempts to
display them symbolically). This option may be

February, 1990
Revision C

netstat(lN)

-s

netstat(lN)

used with any of the display formats.

Show per-protocol statistics.

-r Show the routing tables. When -s is also
present, show routing statistics instead.

-f addressfamily
Limit statistics or address control block reports
to those of the specified address/amily. The
following address families are recognized:
inet, for AF INET, ns, for AF NS, and
unix, for AF _UNIX. -

The arguments, system and core allow substitutes for the defaults
"/vmunix" and" /dev/kmem".

The default display, for active sockets, shows the local and remote
addresses, send and receive queue sizes (in bytes), protocol, and
the internal state of the protocol. Address formats are of the form
"host. port" or "network. port" if a socket's address
specifies a network but no specific host address. When known the
host and network addresses are displayed symbolically according
to the data bases jete/hosts and jete/networks, respec­
tively. If a symbolic name for an address is unknown, or if the-n
flag option is specified, the address is printed numerically, accord­
ing to the address family. For more information regarding the In­
ternet "dot format," refer to inet(3N). Unspecified, or "wild­
card, " addresses and ports appear as "*".

The interface display provides a table of cumulative statistics re­
garding packets transferred, errors, and collisions. The network
addresses of the interface and the maximum transmission unit
("mtu") are also displayed.

The routing table display indicates the available routes and their
status. Each route consists of a destination host or network and a
gateway to use in forwarding packets. The flags field shows the
state of the route ("U" if "up"), whether the route is to a gate­
way ("G"), and whether the route was created dynamically by a
redirect ("D"). Direct routes are created for each interface at­
tached to the local host; the gateway field for such entries shows
the address of the outgoing interface. The refcnt field gives the
current number of active uses of the route. Connection oriented
protocols normally hold on to a single route for the duration of a
connection while connection less protocols obtain a route while

February, 1990
Revision C

2

netstat(1N) netstat(IN)

sending to the same destination. The use field provides a count of
the number of packets sent using that route. The interface entry
indicates the network interface utilized for the route.

When netstat is invoked with an interval argumentt it displays
a running count of statistics related to network interfaces. This
display consists of a column for the primary interface (the first in­
terface found during autoconfiguration) and a column summariz­
ing information for all interfaces. The primary interface may be
replaced with another interface with the -I option. The first line
of each screen of information contains a summary since the sys­
tem was last rebooted. Subsequent lines of output show values ac­
cumulated over the preceding interval.

FILES
/usr/bin/netstat

SEE ALSO
trpt(lM), hosts(4), networks(4N}t protocols(4N)t
services(4N}.

BUGS

3

The notion of errors is ill-defined. Collisions mean something else
for the IMP.

February, 1990
RevisionC

newform(1) newform(l)

NAME
newform- change the format of a text file

SYNOPSIS
newform [-an] [-bn] [-cehar] [-en] [-f] [-itabspee]
[-In] [-otabspee] [-pn] [-5] ffile ...]

DESCRIPTION
new form reads lines from the named files, or the standard input if
no input file is named, and reproduces the lines on the standard
output. Lines are reformatted in accordance with command line
options in effect.

Except for -5, command line options may appear in any order,
may be repeated, and may be intermingled with the optional files.
Command line options are processed in the order specified. This
means that option sequences like -e 15 -160 will yield results
different from -160 -e 15.

FLAG OPTIONS
The following flag options are interpreted by newform:

-itabspee Input tab specification: expands tabs to spaces, ac­
cording to the tab specifications given. tabs pee recog­
nizes all tab specification forms described in tabs(1).
In addition, tabs pee may be --, in which newform
assumes that the tab specification is to be found in the
first line read from the standard input (see fspec(4».
If no tabspee is given, tabspee defaults to -S. A
tabspee of -0 expects no tabs; if any are found, they
are treated as -1.

-otabspee Output tab specification: replaces spaces by tabs, ac­
cording to the tab specifications given. The tab
specifications are the same as for -itabspee. If no
tabspee is given, tabspee defaults to -8. A tabs pee of
-0 means that no spaces will be converted to tabs on
output.

-In Set the effective line length to n characters. If n is not
entered, -1 defaults to 72. The default line length
without the -1 option is 80 characters. Note that tabs
and backspaces are considered to be one character
(use -i to expand tabs to spaces).

-bn Truncate n characters from the beginning of the line
when the line length is greater than the effective line

February, 1990 1
Revision C

newform(l) newform(l)

2

length (see -In). Default is to truncate the number of
characters necessary to obtain the effective line
length. The default value is used when -b with no n
is used. This option can be used to delete the se­
quence numbers from a COBOL program as follows:

newform -11 -b7 filename

The -11 must be used to set the effective line length
shorter than any existing line in the file so that the -b
option is activated.

-en Same as -bn except that characters are truncated from
the end of the line.

-ck Change the prefix/append character to k. Default
character for k is a space.

-pn Prefix n characters (see -ck) to the beginning of a line
when the line length is less than the effective line
length. Default is to prefix the number of characters
necessary to obtain the effective line length.

-an Same as -pn except characters are· appended to the
end of a line.

-f Write the tab specification format line on the standard
output before any other lines are output. The tab
specification format line which is printed will
correspond to the format specified in the last -0 op­
tion. If no -0 option is specified, the line which is
printed will contain the default specification of -8.

-3 Shears off leading characters on each line up to the
first tab and places up to 8 of the sheared characters at
the end of the line. If more than 8 characters (not
counting the first tab) are sheared, the eighth character
is replaced by an * and any characters to the right of it
are discarded. The first tab is always discarded.

An error message and program exit will occur if this
option is used on a file without a tab on each line. The
characters sheared off are saved internally until all
other options specified are applied to that line. The
characters are then added at the end of the processed
line.

February, 1990
RevisionC

newform(l) newform(l)

For example, to convert a file with leading digits, one
or more tabs, and text on each line, to a file beginning
with the text, all tabs after the first expanded to spaces,
padded with spaces out to column 72 (or truncated to
column 72), and the leading digits placed starting at
column 73, the command would be:

newform -s -i -1 -a -e filename

DIAGNOSTICS
All diagnostics are fatal.
usage: ...

newform was called with a bad option.
not -s format

There was no tab on one line.
can't open file

Self explanatory.
internal line too long

A line exceeds 512 characters after being expanded in the
internal work buffer.

tabspec in error
A tab specification is incorrectly formatted, or specified tab
stops are not ascending.

tabspec indirection illegal
A tabspec read from a file (or standard input) may not con­
tain a tabspec referencing another file (or standard input).

EXIT CODES
o - normal execution
1 - for any error

FILES
/bin/newform

SEE ALSO
cspli t(I), tabs(1), fspec(4).

BUGS
newform normally only keeps track of printable characters; how­
ever, for the -i and -0 options, newform will keep track of
backspaces in order to line up tabs in the appropriate logical
columns.

newform will not prompt the user if a tabs pee is to be read from
the standard input (by use of -i - or -0 -).

February, 1990
Revision C

3

newform(l) newform(l)

4

If the -f option is used, and the last -0 option specified was -0 -,

and was preceded by either a -0 - or a - i -, the tab specification
format line will be incorrect

February, 1990
RevisionC

newgrp(1) newgrp(l)

NAME
newgrp -login to a new group

SYNOPSIS
newgrp [-] [group]

DESCRIPTION
newgrp changes a user's group identification. The user remains
logged in, and the current directory is unchanged, but calculations
of access permissions to files are performed with respect to the
new real and effective group IDs. The user is always given a new
shell, replacing the current shell, by newgrp, regardless of
whether it terminated successfully or terminated due to an error
condition (that is, unknown group).

Exported variables retain their values after invoking newgrp;
however, all un exported variables are either reset to their default
value or set to null. System variables (such as PS1, PS2, PATH,
MAIL, and HOME), unless exported by the system or explicitly ex­
ported by the user, are reset to default values. For example, a user
has a primary prompt string (PS1) other than $ (default) and has
not exported P S 1. After an invocation of newg rp, successful or
not, their PS1 will now be set to the default prompt string $. Note
that the shell command export (see sh(l)) is the method used to
export variables so that their assigned value is retained when in­
voking new shells.

With no arguments, newgrp changes the group identification
back to the group specified in the user's password file entry.

If the first argument to newgrp is a -, the environment is
changed to what would be expected if the user actually logged in
again.

A password is demanded if the group has a password and the user
does not, or if the group has a password and the user is not listed
in fete/group as being a member of that group.

EXAMPLES
newgrp grpnam

would set the user's group ID to that of the group named
grpnam.

February, 1990 1
Revision C

newgrp(l}

FILES
/bin/newgrp
jete/group
/ete/passwd

SEE ALSO

newgrp(l}

login(1}, sh(1}, group(4}, passwd(4}, environ(5}.

BUGS

2

There is no convenient way to enter a password into
jete/group. Use of group passwords is not encouraged, be­
cause, by their very nature, they encourage poor security prac­
tices. Group passwords may disappear in the future.

February, 1990
RevisionC

news(l) news(l)

NAME
news - display local news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION
news is used to keep the user informed of current events. By
convention, these events are described by files in the directory
/usr/news.

When invoked without arguments, news displays the contents of
all current files in / us r / new s, most recent first, with each pre­
ceded by an appropriate header. news stores the "currency"
time as the modification date of a file named. news time in the
user's home directory (the identity of this directory Is determined
by the environment variable $HOME); only files more recent than
this currency time are considered "current."

The -a flag option causes news to display all items, regardless of
currency. In this case, the stored time is not changed.

The -n option causes new s to report the names of the current
items without displaying their contents, and without changing the
stored time.

The -s flag option causes news to report how many current items
exist, without displaying their names or contents, and without
changing the stored time. It is useful to include such an invoca­
tion of news in one's . profile file, or in the system's
fete/profile.

All other arguments are assumed to be specific news items that are
to be displayed.

If the interrupt character (usually CONlROL-C) is pressed during
the display of a news item, the display stops and the next item is
started. Another interrupt within one second of the first causes the
program to terminate.

EXAMPLES
news

will display all files in /usr /news that have not been read previ-

February, 1990
Revision C

1

news(l)

ously by the account owner.

FILES
/bin/news
Jete/profile
/usr/news/*
$HOME/.news_time

SEE ALSO
profile(4), environ(5).

2

news(l)

February, 1990
RevisionC

nice(l) nice(l)

NAME
ni ce - run a command at low priority

SYNOPSIS
nice [-increment] command [arguments]

DESCRIPTION
nice executes command with a lower CPU scheduling priority.
If the increment argument (in the range 1-19) is given, it is used; if
not, an increment of 10 is assumed. The nice command built
into the C shell is different from /bin/nice, which can be used
by any shell.

The superuser may run commands with priority higher than nor­
mal by using a negative increment, e.g., --10.

EXAMPLES
For the Bourne shell (sh) or Korn shell (ksh):

nice -10 date

would cause the program da te to be processed at a priority lower
than normal (0), i.e., at +10. In the C shell (csh), the same is
achieved by typing in

nice +10 date

FILES
/bin/nice

SEE ALSO
csh(l), ksh(1), nohup(1), sh(1), nice(2).

DIAGNOSTICS
nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

February, 1990
Revision C

1

nl(l) nl(l)

NAME
nl -line numbering filter

SYNOPSIS
nl [-btype] [-ddelim] [-ftype] [-htype] [-iincr] [-lnum]
[-nformat] [-p] [-ssep] [-vstart#] [-wwidth]file

DESCRIPTION
nl reads lines from the named file or the standard input if no file is
named and reproduces the lines on the standard output Lines are
numbered on the left in accordance with the command options in
effect

nl views the text it reads in terms of logical pages. Line number­
ing is reset at the start of each logical page. A logical page con­
sists of a header, a body, and a footer section. Empty sections are
valid. Different line numbering options are independently avail­
able for header, body, and footer (for example, no numbering of
header and footer lines while numbering blank lines only in the
body).

The start of logical page sections are signaled by input lines con­
taining nothing but the following delimiter character(s):

Line contents Start of

\: \: \:
\: \:
\ :

header
body
footer

Unless optioned otherwise, nl assumes the text being read is in a
single logical page body.

FLAG OPTIONS

1

Command options may appear in any order and may be intermin­
gled with an optional file name. Only one file may be named.
The flag options are:

-btype Specifies which logical page body lines
are to be numbered. Recognized types
and their meaning are: a, number all
lines; t, number lines with printable
text only; n, no line numbering;
pstring, number only lines that contain
the regular expression specified in
string. Default type for logical page
body is t (text lines numbered).

February, 1990
Revision C

nl(l)

-htype

-ftype

-p

-vstart#

-iincr

-ssep

-wwidth

-nformat

-lnum

-dxx

February, 1990
Revision C

nl(1)

Same as -btype except for header. De­
fault type for logical page header is n
(no lines numbered).

Same as -btype except for footer. De­
fault for logical page footer is n (no
lines numbered).

Do not restart numbering at logical
page delimiters.

Start# is the initial value used to
number logical page lines. Default is
1.

iner is the increment value used to
number logical page lines. Default is
1.

sep is the character(s) used in separat­
ing the line number and the
corresponding text line. Default sep is
a tab.

width is the number of characters to be
used for the line number. Default
width is 6.

format is the line numbering format.
Recognized values are: In, left
justified, leading zeroes suppressed;
rn, right justified, leading zeroes
suppressed; r z, right justified, leading
zeroes kept. Default format is rn
(right justified).

num is the number of blank lines to be
considered as one. For example, -12
results in only the second adjacent
blank being numbered (if the appropri­
ate -ha, -ba, and/or -fa option is
set). Default is 1.

The delimiter characters specifying the
start of a logical page section may be
changed from the default characters (\:)
to two user-specified characters. If
only one character is entered, the

2

nl(l)

EXAMPLES

nl(l)

second character remains the default
character (:). No space should appear
between the -d and the delimiter char­
acters. To enter a backslash, use two
backslashes.

nl -vlO -ilO -d!+ filel

will number filel starting at line number 10 with an increment
of ten. The logical page delimiters are !+.

FILES
/bin/nl

SEE ALSO
awk(1), cat(1), pr(l), sed(I).

3 February, 1990
RevisionC

nm(l)

NAME
nm - display the symbol table of a common object file

SYNOPSIS
nm [-d] [-e] [-f] [-h] [-n] [-0] [-T] [-u] [-v] [-v] [-x]
file ...

DESCRIPTION

nm(l)

The nm command displays the symbol table of each common ob­
ject file filename. filename may be a relocatable or absolute com­
mon object file, or it may be an archive of relocatable or absolute
common object files. nm prints the following information for each
symbol. Note that the object file must have been compiled with
the -g flag option of the cc{l) command for there to be type, size,
or line information.

name
The name of the symbol.

value
Its value expressed as an offset or an address depending on
its storage class.

class
Its storage class.

tv If the symbol is accessed through a transfer vector, this field
contains tv.

type Its type and derived type. If the symbol is an instance of a
structure or a union, the structure or union tag is given fol­
lowing the type (e.g., struct-tag). If the symbol is an array,
the array dimensions are given following the type (e.g.,
char[n] [mD.

size Its size in bytes, if available.

line The source line number at which it is defined, if available.

section
For storage classes static and external, the object file section
containing the symbol (e.g., text, data, or bss).

FLAG OPTIONS
The output of nm may be controlled using the following flag op­
tions:

-d Print the value and size of a symbol in decimal (the de­
fault).

February, 1990 1
Revision C

nm(l) nm(l)

-0

-x

-h

-v

-n

-e

-f

-u

-v

-T

Print the value and size of a symbol in octal instead of
decimal.

Print the value and size of a symbol in hexadecimal in­
stead of decimal.

Do not display the output header data.

Sort external symbols by value before they are printed.

Sort external symbols by name before they are printed.

Print only static and external symbols.

Produce full output Redundant symbols (. test,
. data, . bss), normally suppressed, are printed.

Print undefined ,symbols only.

Print the version of the nm command executing on the
standard error output.

Truncate long names. By default, nm prints the entire
name of the symbols listed. Since object files can have
symbol names with an arbitrary number of characters,
a name that is longer than the width of the column set
aside for names will overflow, forcing every column
after the name to be misaligned. The -T flag option
causes nm to truncate every name which would other­
wise overflow its column and place an asterisk as the
last character in the displayed name to mark it as trun­
cated.

Flag options may be used in any order, either singly or in combi­
nation, and may appear anywhere in the command line. There­
fore, both nm name -e -v and nm -ve name print the static
and external symbols in name, with external symbols sorted by
value.

FILES
Ibin/nm

SEE ALSO
as(l), cc(l), Id(l), a. out(4), ar(4).

WARNINGS

2

When all the symbols are printed, they must be printed in the ord­
er they appear in the symbol table in order to preserve scoping in­
formation. Therefore, the -v and -n flag options should be used
only in conjunction with the -e flag option.

February, 1990
RevisionC

nm(l)

DIAGNOSTICS
nm: name: cannot open

name cannot be read.

nm: name: bad magic
name is not an appropriate common object file.

nm: name: no symbols
The symbols have been stripped from name.

February, 1990
Revision C

nm(l)

3

nohup(1) nOhup(l)

NAME
nohup - run a command immune to hangups

SYNOPSIS
nohup command [arguments]

DESCRIPTION
nohup executes command immune to terminate (EOT,
CON1ROL-D) signal from the controlling terminal.

Note: nohup only operates in cSh(l) and sh(1)).

With nohup, the priority is automatically incremented by 5.
nohup should be used with processes running in background
(with &) in order to prevent them from responding to interrupts or
stealing the input from the next person who logs in on the same
terminal. In csh, processes run in the background are automati­
cally immune to hangups.

If output is not redirected by the user, both the standard output and
standard error are sent to a file named nohup. out. If
nohup. out is not writable in the current directory, output is
redirected to $HOME/nohup. out.

EXAMPLES

1

nohup nroff -rom docsfile I lp

runs the nroff command shown, immune to hangups, quits, and
interrupts.

It is frequently desirable to apply nohup to pipelines or lists of
commands. This can be done only by placing pipelines and com­
mands lists in a single file, called a shell procedure. One can then
issue:

nohup sh file

and the nohup applies to everything in file. If the shell pro­
cedure file is to be executed often, then the need to type sh can
be eliminated by giving file execute permission. Add an am­
persand and the contents of f i 1 e are run in the background with
interrupts also ignored (see sh(l) and ksh(1)):

nohup file &

An example of what the contents of file could be is:

tbl ofile I eqn I nroff > nfile

February, 1990
Revision C

nOhup(l) nohup(l)

FILES
/bin/nohup
nohup. out standard output and standard error file.

SEE ALSO
chmod(l), csh(l), ksh(l), nice(l), sh(1), nice(2), sig­
nal(3).

WARNINGS
nohup command]; command2

nohup applies only to command]

nohup (command]; command2)
is syntactically incorrect.

Be careful of where standard error is directed. The following
command may put error messages on disk, making it unreadable:

nohup epio -0 < list> /dev/dsk/e8dOsO 2>&1 &

while the next command:

nohup epio -0 < list > /dev/dsk/e8dOsO 2>errors &

puts the error messages into the file errors.

February,1990
Revision C

2

nroff(l) nroff(l)

NAME
nroff - text formatting language

SYNOPSIS
nroff [-oUst] [-nN] [-s[N]] [-raN] [-i] [-q] [-z] [-mnarne]
[-Ttty-type] [file . ..]

DESCRIPTION
nroff formats text contained in files (standard input by default)
for printing on typewriter-like devices and line printers.

An argument consisting of a minus (-) is taken to be a file name
corresponding to the standard input.

FLAG OPTIONS

1

The flag options, which may appear in any order, but must appear
before the files, are: .

-oUst Print only pages whose page numbers appear in the list
of numbers and ranges, separated by commas. A range
N-M means pages N through M; an initial -N means
from the beginning to page N; and a final N- means
from N to the end. (See BUGS below.)

-nN Number first generated page N.
-sN Stop every N pages. nroff will halt after every N

pages (default N=l) to allow paper loading or changing,
and will resume upon receipt of a linefeed or newline
(newlines do not work in pipelines, e.g., with mm(l)).
This option does not work if the output of nroff is
piped through col(l). When nroff (otroff) halts
between pages, an ASCII BEL is sent to the terminal.

-raN Set register a (which must have a one-character name)
toN.

- i Read standard input after files are exhausted.
-q Invoke the simultaneous input-output mode of the. rd

request.
-z Print only messages generated by . tm (terminal mes­

sage) requests.
-mnarne Prepend to the input files the macro file

/usr/lib/tmac/tmac.narne.
-Ttty-type

Prepare output for specified terminal. Known tty-types
are
2631 Hew lett-Packard 2631 printer in regular

mode

February, 1990
RevisionC

nroff(1) nroff(l)

2631-c Hewlett-Packard 2631 printer in
compressed mode

2631-e Hewlett-Packard 2631 printer in expand­
edmode

300 DASI-300 printer
300-12 DASI-300 terminal set to 12-pitch (12

characters per inch)
300 s DASI-300s printer (300s is a synonym)
300s-12 DASI-300s terminal set to 12-pitch (12

characters per inch) (300s-12 is a
synonym)

37 TELETYPE Model 37 terminal (default)
382 DTC-382
4 0 0 0 a Trendata 4000a terminal (4000a is a

synonym)
450 DASI-450 (Diablo Hyterm) printer
450-12 DASI-450 (Diablo Hyterm) printer set to

12-pitch (12 characters per inch)
832 Anderson Jacobson 832 terminal
8510 C.ITOH printer
1 p generic name for printers that can under­

line and tab (All text using reverse line
feeds, such as those having tables, that is
sent to 1 p must be processed with
col (I))

tn300 GE Terminet 300 terminal
X Printers equipped with TX print train

-e Produce equally-spaced words in adjusted lines, using
the full resolution of the particular terminal.

-h Use output tabs during horizontal spacing to speed out­
put and reduce output character count. Tab settings are
assumed to be every 8 nominal character widths.

-un Set the emboldening factor (number of character over­
strikes) for the third font position (bold) to n, or to zero
if n is missing.

FILES
/bin/nroff
/usr/lib/tmac/tmac.*

/usr/lib/macros/*
/usr/lib/nterm/*

February, 1990
Revision C

standard macro files and
pointers
standard macro files
terminal driving tables for
nroff

2

nroff(l) nroff(l)

/usr /pub/terminals list of supported terminals

SEE ALSO
checknr(l), col(1), deroff(1), greek(1), neqn(1), tbl(1).
mm(1), mm(S).
"nroff /troff Reference" in A/UX Text Processing Tools.

BUGS

3

nroff believes in Eastern Standard Time; as a result, depending
on the time of the year and on your local time zone, the date that
nroff generates may be off by one day from your idea of what
the date is.

When nroff is used with the -olist option inside a pipeline (e.g.,
with one or more of neqn(1), and tbl(1», it may cause a harm­
less "broken pipe" diagnostic if the last page of the document is
not specified in list.

February, 1990
RevisionC

nslookup(1)

NAME
nslookup - query name servers interactively

SYNOPSIS
nslookup
nslookup - server
nslookup host-to-find [server]

DESCRIPTION

nslookup(l)

nslookup is a program which queries DARPA Internet domain
name servers.

server is a either the host name or address for a name server.

nslookup has two modes: interactive and non-interactive. In­
teractive mode allows the user to query the name server for infor­
mation about various hosts and domains or print a list of hosts in
the domain. Non-interactive mode is used to print just the name
and Internet address of a host or domain.

Interactive mode is entered in the following cases:

a) when no arguments are given (the default name server will be
used), and

b) when the first argument is a hyphen (-) and the second argu-
ment is the host name of a name server.

Non-interactive mode is used when the name of the host to be
looked up is given as the first argument. The optional second argu­
ment specifies a server.

INTERACTIVE COMMANDS
Commands may be interrupted at any time by typing a CONTROL­
C. To exit, enter the end-of-file signal, CONlROL-D. The com­
mand line length must be less than 80 characters.

Note: an unrecognized command will be interpreted as a host
name.

host [server]
Look up infonnation for host using the current default server,
or using server if it is specified.

server domain

February, 1990
Revision C

1

nslookup(l) nslookup(l)

Iserver domain
Change the default server to domain. Iserver uses the ini­
tial server to look up information about domain while
server uses the current default server. If an authoritative
answer can't be found, the names of servers that might have
the answer are returned.

root
Changes the default server to the server for the root of the
domain name space. Currently, the host sri-nic. arpa
is used. (This command is a synonym for the Iserver
sri-nic. arpa.) The name of the root server can be
changed with the set root command.

finger [name] [> filename]
finger [name] [» filename]

Connects with the finger server on the current host. The
current host is defined when a previous lookup for a host was
successful and returned address information (see the set
que ryt ype=A command). name is optional. > and > >
can be used to redirect output in the usual manner.

Is domain [> filename]
Is domain [» filename]
Is -a domain [> filename]
Is -a domain [» filename]
Is -h domain [> filename]
Is -h domain [» filename]

List the information available for domain. The default output
contains host names and their Internet addresses. The -a op­
tion lists aliases of hosts in the domain. The - h option lists
CPU and operating system information for the domain.
When output is directed to a file, hash marks are printed for
every 50 records received from the server.

view filename
Sorts and lists the output of the 1 s command with
more(1).

2 February, 1990
RevisionC

nslookup(I) nslookup(l)

help
? Prints a brief summary of commands.

set keyword[=value]
This command is used to change state infonnation that af­
feets the lookups. Valid keywords are:

all
Prints the current values of the various options to set.
Information about the current default server and host is
also printed.

[no] debug
Tum debugging mode on. A lot more information is
printed about the packet sent to the server and the result­
ing answer.
(Default = nodebug, abbreviation = [no]deb)

[no]defname
Append the default domain name to every lookup.
(Default = nodefname, abbreviation = [no]def)

domain=name
Change the default domain name to name. The default
domain name is appended to all lookup requests if the
defname option has been set.
(Default = value in / etc/ resol v. conf, abbrevia­
tion = do)

que ryt ype=value
Change the type of information returned from a query to
one of:

A

CNAME

HINFO

MD

MX

MG

MINFO

the host's Internet address (the default).

the canonical name for an alias.

the host CPU and operating system type.

the mail destination.

the mail exchanger.

the mail group member.

the mailbox or mail list information.

MR the mail rename domain name.
Other types specified in the RFC883 document are valid but
aren't very useful.

February, 1990 3
Revision C

nslookup(l) nslookup(l)

(Abbreviation = q)

[no]reeurse
Tell the name server to query other servers if it does not
have the information.
(Default = reeurse, abbreviation = [no]ree)

ret ry=number
Set the number of retries to number. When a reply to a
request is not received within a certain amount of time
(changed with set timeout), the request is resent.
The retry value controls how many times a request is
resent before giving up.
(Default = 2, abbreviation = ret)

root=host
Change the name of the root server to host. This affects
the root command.
(Default = sri-nie. arpa. abbreviation = ro)

timeout=number
Change the time-out interval for waiting for a reply to
number seconds.
(Default = 10 seconds, abbreviation = t)

[no]ve
Always use a virtual circuit when sending requests to
the server.
(Default = nove, abbreviation = [no]v)

TUTORIAL

4

The domain name space is tree-structured and currently has five
top-level domains:

• com (for commercial establishments)

• edu (for educational institutions)

• gov (for government agencies)

• org (for not for profit orginizations)

• mil (for MILNET hosts)

If you are looking for a specific host, you need to know something
about the host's organization in order to determine the top-level
domain it belongs to. For instance. if you want to find the Internet
address of a machine at UCLA. do the following:

February, 1990
RevisionC

nslookup(l) nslookup(l)

a) Connect with the root server using the root command. The
root server of the name space has knowledge of the top-level
domains.

b) Since UCLA is a university, its domain name is ucla. edu.
Connect with a server for the ucla. edu domain with the
command server ucla. edu. The response will print the
names of hosts that act as servers for the domain ucla. edu.
Note that the root server does not have information about
ucla. edu but knows the names and addresses of hosts that
do. All future queries will be sent to the UCLA name server.

c) To request information about a particular host in the domain,
type the host name. To request a listing of hosts in the UCLA
domain, use the Is command. The Is command requires a
domain name (in this case, ucla. edu) as an argument.

Note that if you are connected with a name server that handles
more than one domain, all lookups for host name must be fully
specified with its domain. For instance, the domain
harvard. edu is served by seismo. css. gov, which also
services the css. gov and cornell. edu domains. A lookup
request for the host aiken in the harvard. edu domain must
be specified as aiken. harvard. edu. However, the set
domain=name and set defname commands can be used to
automatically append a domain name to each request

After a successful lookup of a host, use the finger command to
see who is on the system or to finger a specific person. To get oth­
er information about the host, use the set querytype=value
command to change the type of information desired and request
another lookup. (finger requires value to be A.)

DIAGNOSTICS
If the lookup request was not successful, an error message is print­
ed. Possible errors are:

Time-out
The server did not respond to a request after a certain amount
of time (changed with set timeout=value) and a certain
number of retries (changed with set retry=value).

No information
Depending on the query type set with the set
querytype command, no information about the host was
available, though the host name is valid.

February, 1990
Revision C

5

nslookup(1) nslookup(1)

Non-existent domain
The host or domain name does not exist.

Connection refused
Network is unreachable

The connection to the name or finger server could not be
made at the current time. This error commonly occurs with
finger requests.

Server failure
The name server found an internal inconsistency in its data­
base and could not return a valid answer.

Refused
The name server refused to service the request.

Format error
The name server found that the request packet was not in the
proper format. This error should not occur. It would indicate
a bug in the program.

FILES
/etc/bind/tools/nslookup
/etc/resolv.conf initial domain name and

name server addresses
SEE ALSO

6

named(lM), resol ver(4).
RFC-882, RFC-883 (DNN Network Information Center, SRI
In temational)

February, 1990
RevisionC

od(l) od(l)

NAME
od - convert binary data to a displayable form in octal, decimal,
hexadecimal, or ASCII

SYNOPSIS
od [-b] [-c] [-d] [-0] [-s] [-x] [file] [[+] offset [.][b]]

DESCRIPTION
od dumps file in one or more formats as selected by the first argu­
ment. If the first argument is missing or an illegal flag option is
specified, -0 is default. The meanings of the format flag options
are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain nongraphic characters ap-
pear as C escapes: null=\O, backspace=\b, form-feed=\f,
newline=\n, retum=\r, tab=\ t; others appear as 3-digit oc­
tal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

-s Interpret words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping
is to commence. This argument is normally interpreted as octal
bytes. If . is appended, the offset is interpreted in decimal. If b
is appended, the offset is interpreted in blocks of 512 bytes. If the
file argument is omitted, the offset argument must be preceded by
+.

Dumping continues until end-of-file. If a file contains many lines
of repeating characters, od represents the repeating lines with an
asterisk.

EXAMPLES
od -d file +2

produces an octal dump of file divided up into 32-bit words ex­
pressed in decimal equivalents with the dump starting point offset
by 2 octal bytes.

February, 1990
Revision C

1

od(l)

FILES
/bin/od

SEE ALSO
adb(I), dump(I), nm(1), strings(1).

2

od(l)

February, 1990
Revision C

otroff(l) otroff(l)

NAME
otroff - text formatting and typesetting

SYNOPSIS
otroff [-cname] [-kname] [-t] [-f] [-w] [-b] [-pN] [file ...]

DESCRIPTION
otroff is the old version of troff(1). It fonnats text contained
in files for standard output. The output is formatted for a Wang
C/ A{f phototypesetter.

FLAG OPTIONS
If no file argument is present, the standard input is read. An argu­
ment consisting of a single minus (-) is taken to be a filename
corresponding to the standard input. The flag options, which may
appear in any order so long as they appear before the files, are:

-cname

-kname

-t

-f

-w

-b

-pN

EXAMPLES
The command

Insert before the input files the compacted macro
files:

/usr/lib/macros/ cmp. [nt]. [dt]. name
/usr/lib/macros/ucmp. [nt] . name

Compact the macros used in this invocation of
otroff, placing the output in files [dt]. name in
the current directory

Direct output to the standard output, instead of the
phototypesetter (this is the default).

Refrain from feeding out paper and stopping pho­
totypesetter at the end of the run.

Wait until phototypesetter is available, if it is
currently busy.

Report whether the phototypesetter is busy or
available. No text processing is done.

Print all characters in point size N while retaining
all prescribed spacings and motions, to reduce pho­
totypesetter elapsed time.

otroff -rom file

formats the text contained infile, and invokes the macro package
rom.

February, 1990 1
Revision C

otroff(1)

FILES
/bin/otroff
/usr/lib/suftab
/tmp/ta$#
/tmp/trtmp*
/usr/lib/tmac/tmac.*

/usr/lib/macros/*
/usr/lib/font/dev*/*

SEE ALSO

otroff(1)

suffix hyphenation tables
temporary file
temporary file
standard macro files and
pointers
standard macro files
font width tables for t ro f f

cw(1)t eqn(1)t mmt(1)t nroff(1)t pic(l)t tbl(l)t tc(l)t
t rOff(1)t mm(5)t ms(5)t mv(5).
A/UX Text Processing Tools.

2 Februaryt 1990
RevisionC

pack(l)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [-] [-f] name ...

pcat name ...
unpack name . ..

DESCRIPTION

pack(l)

pack attempts to store the specified files in a compressed form.
Wherever possible (and useful), each input file name is replaced
by a packed file name. z with the same access modes, access and
modified dates, and owner as those of name. The - f flag option
will force packing of name. This is useful for causing an entire
directory to be packed even if some of the files will not benefit. If
pack is successful, name will be removed. Packed files can be
restored to their original form using unpack or peat.

pack uses Huffman (minimum redundancy) codes on a byte-by­
byte basis. If the - argument is used, an internal flag is set that
causes the number of times each byte is used, its relative frequen­
cy, and the code for the byte to be printed on the standard output.
Additional occurrences of - in place of name will cause the inter­
nal flag to be set and reset.

The amount of compression obtained depends on the size of the
input file and the character frequency distribution. Because a
decoding tree forms the first part of each . z file, it is usually not
worthwhile to pack files smaller than three blocks, unless the char­
acter frequency distribution is very skewed, which may occur with
printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size.
Load modules, which use a larger character set and have a more
uniform distribution of characters, show little compression, the
packed versions being about 90% of the original size.

pack returns a value that is the number of files that it failed to
compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;

February, 1990
Revision C

1

pack(l) pack(l)

2

the file cannot be opened;
no disk storage blocks will be saved by packing;
the file is of zero length;
a file called name. z already exists;
the . z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12
characters to allow space for the appended . z extension. Direc­
tories cannot be compressed.

pc at does for packed files what eat(l) does for ordinary files,
except that pc at cannot be used as a filter. The specified files are
unpacked and written to the standard output. Thus to view a
packed file named name. z use:

pc at name.z

or just:

pcat name

To make an unpacked copy, say nnn, of a packed file named
name. z (without destroying name. z) use the command:

peat name > nnn

pcat returns the number of files it was unable to unpack. Failure
may occur if:

the file name (exclusive of the . z) has more than 12 charac­
ters;
the file cannot be opened;
the file does not appear to be the output of pack.

unpack expands files created by pack. For each file name
specified in the command, a search is made for a file called
name. z (or just name, if name ends in . z). If this file appears to
be a packed file, it is replaced by its expanded version. The new
file has the . z suffix stripped from its name, and has the same ac­
cess modes, access and modification dates, and owner as those of
the packed file.

unpack returns a value that is the number of files it was unable to
unpack. Failure may occur for the same reasons that it may in
peat, as well as for the following:

February, 1990
RevisionC

pack(1)

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

EXAMPLES
pack filel

pack(l)

will pack file f i 1 e 1 into f i 1 e 1 . z and removes f i 1 e 1 if pack­
ing is successful.

FILES
/usr/bin/pack
/usr/bin/pcat
/usr/bin/unpack

SEE ALSO
cat(l), compact(I).

February, 1990
Revision C

3

page(1)

See more(l)

1

page(l)

February, 1990
RevisionC

pagesize(l) pagesize(l)

NAME
pagesize - display system page size

SYNOPSIS
pagesize

DESCRIPTION
pagesize prints the size of a page of memory in bytes. This
program is useful in constructing portable shell scripts.

FILES
/bin/pagesize

SEE ALSO
uvar(2).

February, 1990
Revision C

1

passwd(l) passwd(l)

NAME
passwd - change login password

SYNOPSIS
passwd [name]

DESCRIPTION

1

This command changes (or installs) a password associated with
the login name.

Ordinary users may change only the password which corresponds
to their login name.

passwd prompts ordinary users for their old password, if any. It
then prompts for the new password twice. The first time the new
password is entered passwd checks to see if the old password has
aged sufficiently. If aging is insufficient, the new password is re­
jected and passwd terminates; see passwd(4).

Assuming aging is sufficient, a check is made to ensure that the
new password meets construction requirements. When the new
password is entered a second time, the two copies of the new pass­
word are compared. If the two copies are not identical, the cycle
of prompting for the new password is repeated for at most two
more times.

Passwords must meet the following requirements:

Each password must have at least six characters. Only the
first eight characters are significant.

Each password must contain at least two alphabetic charac­
ters (uppercase or lowercase) and at least one numeric or spe­
cial character.

Each password must differ from the user's login name and
any reverse or circular shift of that login name. For com­
parison purposes, an uppercase letter and its corresponding
lowercase letter are equivalent.

New passwords must differ from the old by at least three
characters. For comparison purposes, an uppercase letter and
its corresponding lowercase letter are equivalent.

One whose effective user ID is zero is called a superuser; see
id(l), and su(l). Superusers may change any password; hence,
passwd does not prompt superusers for the old password. Su­
perusers are not forced to comply with password aging and pass­
word construction requirements. A superuser can create a null

February, 1990
RevisionC

passwd(l) passwd(l)

password by entering a carriage return in response to the prompt
for a new password.

EXAMPLES
passwd

will give the response

Changing password for <username>

and will then prompt for your present password and for the new
password (twice).

FILES
/bin/passwd
/etc/passwd

SEE ALSO
chsh(1), login(1), id(1), su(1)~ crypt(3C), passwd(4).

February, 1990
Revision C

2

paste(l) paste(1)

NAME
paste - merge lines of several files or subsequent lines of one
file

SYNOPSIS
paste filelfile2 ...
paste -dlistfilelfile2 ...
paste -s [-dlist]filelfile2 ...

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of
the given input files filel ,file2, etc. It treats each file as a column
or columns of a table and pastes them together horizontally (paral­
lel merging). If you will, it is the counterpart of cat(l) which
concatenates vertically, i.e., one file after the other. In the last
form above, paste replaces the function of an older command
with the same name by combining subsequent lines of the input
file (serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list.
Output is to the standard output, so it can be used as the start of a
pipe, or as a filter, if - is used in place of a file name.

FLAG OPTIONS

1

The meanings of the flag options are:

-d Without this flag option, the newline characters of each but
the last file (or last line in case of the -s flag option) are re­
placed by a tab character. This flag option allows replacing
the tab character by one or more alternate characters (see
below).

list One or more characters immediately following -d replace the
default tab as the line concatenation character. The list is
used circularly, i.e., when exhausted, it is reused. In parallel
merging (i.e., no -s flag option), the lines from the last file
are always terminated with a newline character, not from the
list. The list may contain the special escape sequences: \ n
(newline) \ t (tab), \ \ (backslash), and \ 0 (empty string, not
a null character). Quoting may be necessary, if characters
have special meaning to the shell (e.g., to get one backslash,
use -d \\\VIII).

-s Merge subsequent lines rather than one from each input file.
Use tab, for concatenation, unless a list is specified with -d
flag option. Regardless of the list, the very last character of
the file is forced to be a new line.

February, 1990
Revision C

paste(l) paste(l)

May be used in place of any file name, to read a line from the
standard input (There is no prompting).

EXAMPLES
Is I paste -d"" -

list directory in one column.

Is I paste - - - -

list directory in four columns.

paste -s -d"\ t\ n" file

combine pairs of lines into lines.

FILES
/usr/bin/paste

SEE ALSO
cut(1), grep(I), pr(I).

DIAGNOSTICS
line too long

Output lines are restricted to 511 characters.

too many files
Except for -s flag option, no more than 12 input files may be
specified.

February, 1990
Revision C

2

pax(l) pax(l)

NAME
pax - copy files to or from an archive in an IEEE format

SYNOPSIS
pax [-eimopuvy] [-f archive] [-s replstr] [-t device]
[pattern] ...
pax -r [-eimnopuvy] [-f archive] [-s replstr] [-t device]
[pattern] ...
pax -w [-adimuvy] [-b blocking] [-f archive] [-s replstr]
[-t device] [-xformat] [pathname] ...
pax -rw [-ilmopuvy] [-s replstr] [pathname] ... directory

DESCRIPTION

1

pax reads and writes archive files that conform to the
"Archivellnterchange File Format" specified in IEEE Standard
1003.1-1988. pax can also read, but not write, a number of other
file formats in addition to those specified in the description
"Archive/Interchange File Format". Support for these traditional
file formats, such as V7 tar and System V epio, is provided for
backward compatibility and to maximize portability.

pax also supports traditional epio and tar interfaces if invoked
with the name epio or tar, respectively. See epio(l) or
t a r{l) for more details.

Combinations of the -rand -w command line arguments specify
whether pax reads, writes, or lists the contents of the specified ar­
chive, or moves the specified files to another directory.

The command-line arguments are:

-w Write the files and directories specified by pathname ar­
guments to the standard output together with the path­
name and status information prescribed by the archive
format used. The placeholder pathname refers to a file or
a directory. If it is a directory, pax recursively traverses
all the files and subdirectories of pathname as well. If
pathname is not given, then the standard input is read to
get a list of path names to copy, one pathname per line.
In this case, only those pathnames appearing on the stan­
dard input are copied.

-r Cause pax to read an archive file from the standard in­
put. Only files with names that match any of the pattern
arguments are selected for extraction. The selected files
are conditionally created and copied relative to the

February, 1990
Revision C

pax(l) pax(l)

current directory tree, subject to the options described
below. By default, the owner and group of selected files
is that of the invoking process, and the permissions and
modification times are the same as those in the archive.

The supported archive formats are automatically detected
on input. The default output format is ustar, but may
be overridden by the -x flag option described below.

-rw Cause pax to read the files and directories referred to in
pathname and copy them to the destination directory.
The placeholder pathname refers to the files and (recur­
sively) subdirectories of that directory. If pathname is
not given, the standard input is read to get a list of
pathnames to copy, one pathname per line. In this case,
only those pathnames appearing on the standard input are
copied. The directory directory must exist and have the
proper permissions before the copy can occur.

If neither the -r or -w options are given, then pax lists the con­
tents of the specified archive. In this mode, pax lists normal files
one per line, lists non-symbolic link pathnames as

pathname = linkname

and lists symbolic link pathnames, if supported by the implemen­
tation, as

pathname -> linkname

where pathname is the name of the file being extracted and
linkname is the name of a file that appeared earlier in the archive.

If the -v option is specified, then pax list normal pathnames in
the same format used by the Is utility with the -1 option. Non­
symbolic links are shown as

<listing> == linkname

and symbolic links, if supported, are shown as

February, 1990
Revision C

<listing> -> linkname

2

pax(l) pax(l)

pax is capable of reading and writing archives that span multiple
physical volumes. Upon detecting an end-of-medium on an ar­
chive that is not yet completed, pax prompts the user for the next
volume of the archive and allows the user to specify the location
of the next volume.

pax exits with one of two types of values. If all of the files in the
archive were processed successfully, pax exits with a value of O.
If pax aborted due to errors encountered during operation, pax
exits with a nonzero value.

FLAG OPTIONS

3

The following flag options are available:

-a Append the files specified by pathname to the
specified archive.

-b blocking Block the output at blocking bytes per write to
the archive file. A k. suffix multiplies blocking
by 1024, a b suffix multiplies blocking by 512,
and an m suffix multiplies blocking by 1048576
(l megabyte). For machines with 16-bit integers
the maximum buffer size is one byte less than
32 KB. If not specified, blocking is automatical­
ly determined on input and is ignored for -rw.

-c Exclude the files and directories that match pat­
tern.

-d

-f archive

-i

-1

-m

Do no create intermediate directories not expli­
citly listed in the archive. This option is ignored
unless the -r option is specified.

Specify the archive as the pathname of the input
or output archive and override the default of
standard input for -r or standard output for -w.

Interactively rename files. Substitutions
specified by -5 options (described below) are
performed before requesting the new filename
from the user. A file is skipped if an empty line
is entered and pax exits with an exit status of 0
if the end-of-file signal is encountered.

Link files rather than copy them, when possible.

Do not retain file modification times.

February, 1990
RevisionC

pax(1)

-n

-0

-p

-5 replstr

-t device

-u

-v

February, 1990
Revision C

pax(l)

When -r is specified, but -w is not, the pattern
arguments are treated as ordinary filenames.
Only the first occurrence of each of these files in
the input archive is read. The pax utility exits
with an exit status of 0 after all files in the list
are read. If one or more files in the list is not
found, pax writes a diagnostic to standard error
for each of the files and exits with a non-zero
exit status. The file names are compared before
any of the -i, -5, or -y options are applied.

Restore file ownership as specified in the ar­
chive. The invoking process must have ap­
propriate privileges to accomplish this.

Preserve the access time of the input files after
they have been copied.

Modify filenames according to the substitution
expression using the syntax of ed(l) as shown:

-5 /old/new/[gp]

Any nonnull character may be used as a delim­
iter. For the example shown, / is used as the
delimiter. Multiple -5 expressions may be
specified; the expressions are applied in the ord­
er specified, terminating with the first successful
substitution. The optional trailing p causes suc­
cessful mappings to be listed on standard error.
The optional trailing g causes the old expres­
sion to be replaced each time it occurs in the
source string. Files that substitute to an empty
string are ignored both on input and output.

Name the input or output archive device by us­
ing device as an implementation-defined
identifier. This overrides the default of standard
input for -r and standard output for -~.

Copy each file only if it is newer than a pre­
existing file with the same name. This implies
-a.

List filenames as they are encountered. This
produces a verbose list of the table of contents

4

pax(l) pax(l)

5

-x format

on the standard output when both - r and -ware
omitted; otherwise, the filenames are printed to
standard error as they are encountered in the ar­
chive.

Specify the output archive format. The input
format, which must be one of the following, is
automatically determined when the -r option is
used. The supported formats are:

epio The extended CPIO interchange
format specified in "Extended
CPIO Format" in IEEE Standard
1003.1-1988.

ustar The extended TAR interchange
format specified in "Extended TAR
Format" in IEEE Standard
1003.1-1988. This is the default ar­
chive format

-y Interactively prompt for the disposition of each
file. Substitutions specified by -s options
(described above) are performed before prompt­
ing the user for disposition. The eof signal or an
input line starting with the character q after the
prompt causes pax to exit Otherwise, an input
line starting with anything other than y causes
the file to be ignored. This option cannot be
used in conjunction with the -i option.

Only the last of multiple -f or -t options take effect

When writing to an archive, the standard input is used as a list of
pathnames if pathname is not specified. The format is one
pathname per line. Otherwise, the standard input is the archive
file, which is formatted according to one of the specifications in
"Archive/lnterchange Fileformat" in IEEE Standard 1003.1-1988
or to some other implementation-defined format.

The user ID and group ID of the process, together with the ap­
propriate privileges, affect the ability of pax to restore ownership
and permissions attributes of the archived files. (See format­
reading utility in "Archive/lnterchange File Format" in IEEE
Standard 1003.1-1988.)

February, 1990
RevisionC

pax(l) pax(l)

The options -a, -c, -d, -i, -1, -p, -t, -u, and -yare provided
for functional compatibility with the historical cpio and tar
utilities. The option defaults were chosen based on the most com­
mon usage of these options, therefore, some of the options have
meanings different than those of the historical commands.

Arguments
Various arguments are available for reading and writing archives:

directory When copying files with pax, directory names
the destination directory. To invoke this mode,
use both the -r and -w options. The directory
must exist and be writable before the copy or an
error results.

pathname

pattern

EXAMPLES

The placeholder pathname is the file to be used
as the source of a copy (or the file to be copied
into an archive) instead of the files named on the
standard input. When a directory is named, pax
recursively copies all the files and subdirectories
of pathname as well.

When reading data from an archive, pattern
selects particular files in the standard shell­
pattern matching notation. The default if pat­
tern is not specified is to select all files.

The following command

pax -w -f /dev/rmtO .

copies the contents of the current directory to tape drive O.

The commands

mkdir newdir
cd olddir
pax -rw . newdir

copies the contents of olddir to newdir.

The command

pax -r -s ',/usr/*,,' -f pax.out

February, 1990
Revision C

6

pax(l) pax(l)

reads the archive pax. out with all files in the archive under­
neath /usr extracted relative to the current directory. For this ex­
ample the substition string delimiter is the comma.

FILES
/dev/tty Used to prompt the user for information when

the -i or -y options are specified

SEE ALSO
cpio(l), find(l), tar(l), cpio(4), tar(4).

DIAGNOSTICS
pax terminates immediately, without processing any additional
files on the command line or in the archive, in the event of errors.

BUGS
Special permissions may be required to copy or extract special
files.

Device, user ID, and group ID numbers larger than 65535 cause
additional header records to be output. These records are ignored
by some historical versions of cpio(l) and tar(l).

The archive formats described in "Archive/Interchange File For­
mat" have certain restrictions that have been carried over from
historical usage. For example, there are restrictions on the length
of pathnames stored in the archive.

When getting an 1 s -1 style listing on tar format archives, link
counts are listed as 0 because the ustar archive format does not
keep link -count information.

ADDITIONAL COPYRIGHT INFORMATION

7

Portions of this manual page were previously copyrighted (c) 1989
by Mark H. Colburn. Public distribution has been sponsored by
the USENIX Association.

February, 1990
RevisionC

pcat(l)

February, 1990
Revision C

See pack(l)

pcat(l)

1

pdpll(l)

See machid(l)

1

pdpll(l)

February, 1990
Revision C

pg(l) pg(l)

NAME
pg - show the contents of a file in display-size chunks

SYNOPSIS
pg [-number] [+linenumber] [+ Ipattern] [-c] [-e] [-f] [-n]
[-p string] [-3] rJile ...]

DESCRIPTION
The pg command is a filter which allows the examination of files
one screenful at a time on a soft-copy terminal. (The file name -
or null arguments indicate that pg should read from the standard
input.) Each screenful is followed by a prompt. If the user types a
carriage return, another page is displayed; other possibilities are
enumerated below.

This command is different from previous paginators in that it al­
lows you to back up and review something that has already
passed. The method for doing this is explained below.

In order to determine terminal attributes, pg scans the termin­
fo(4) database for the terminal type specified by the environment
variable TERM. If TERM is not defined, the terminal type dumb is
assumed.

FLAG OPTIONS
The command line flag options are:

-number
An integer specifying the size (in lines) of the window that
pg is to use instead of the default. (On a tenninal containing
24 lines, the default window size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string
contains a %d, the first occurrence of %d in the prompt will
be replaced by the current page number when the prompt is
issued. The default prompt string is :.

-c Home the cursor and clear the screen before displaying each
page. This flag option is ignored if clear screen is not
defined for this terminal type in the terminfo(4) data base.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but
some sequences of characters in the text being displayed
(e.g., escape sequences for underlining) generate undesirable
results. The -f flag option inhibits pg from splitting lines.

February, 1990
Revision C

1

pg(1) pg(l)

2

-n Nonnally, commands must be tenninated by a newline. This
flag option causes an automatic end of command as soon as a
command letter is entered.

-5 Causes pg to print all messages and prompts in standout
mode (usually inverse video).

+linenumber
Start up at linenumber.

+/pattern/
Start up at the first line containing the regular expression pat­
tern. The tenninal / may be omitted from this command.

The responses that may be typed when pg pauses can be divided
into three categories: those causing further perusal, those that
search, and those that modify the perusal environment.

Commands which cause further perusal nonnally take a preceding
address, an optionally signed number indicating the point from
which further text should be displayed. This address is interpreted
in either pages or lines depending on the command. A signed ad­
dress specifies a point relative to the current page or line, and an
unsigned address specifies an address relative to the beginning of
the file. Each command has a default address that is used if none
is provided.

The perusal commands and their defaults are as follows:

+1 newline
(or blank) This causes one page to be displayed. The address
is specified in pages.

+1 1
With a relative address this causes pg to simulate scrolling
the screen, forward or backward, the number of lines
specified. With an absolute address this command prints a
screenful beginning at the specified line.

+ 1 d or CONTROL-d
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address.

. or CONTROL-I
Typing a single period or CONTROL-I causes the current page
of text to be redisplayed.

February, 1990
RevisionC

pg(l) pg(l)

$ Displays the last windowful in the file. Use with caution
when the input is a pipe.

The following commands are available for searching for text pat­
terns in the text. The regular expressions described in ed(l) are
available. They must always be terminated by a newline, even if
the -n flag option is specified.

i/pattern/
Search forward for the ith (default i=l) occurrence of pat­
tern. Searching begins immediately after the current page
and continues to the end of the current file, without wrap­
around. The final / may be omitted unless ro, b, or t
modifiers are appended.

iA pattern"

i?pattern?
Search backwards for the ith (default i=l) occurrence of pat­
tern. Searching begins immediately before the current page
and continues to the beginning of the current file, without
wrap-around. The final " and ? may be omitted from these
commands unless the ro, b, or t modifiers are appended. The
A notation is useful for Adds 100 terminals which will not
properly handle the ?

After searching, pg will normally display the line found at the top
of the screen. This can be modified by appending ro or b to the
search command to leave the line found in the middle or at the
bottom of the window from now on. The suffix t can be used to
restore the original situation.

The user of pg can modify the environment of perusal with the
following commands:

if skip i screenfuls and print a screenful of lines in Begin perus­
ing the ith next file in the command line. The i is an un­
signed number, default value is 1.

ip Begin perusing the ith previous file in the command line. i is
an unsigned number, default is 1.

iw Display another window of text. If i is present, set the win­
dow size to i.

iz same as typing a space except that i, if present, becomes the
new window size.

February, 1990 3
Revision C

pg(l) pg(l)

sfilename
Save the input in the named file. Only the current file being
perused is saved. The white space between the s and
filename is optional. This command must always be ter­
minated by a newline, even if the -n flag option is specified.

h Help by displaying an abbreviated summary of available
commands.

q or Q Quit pg.

!command
command is passed to the shell, whose name is taken from
the SHELL environment variable. If this is not available, the
default shell is used. This command must always be ter­
minated by a newline, even if the -n flag option is specified.

At any time when output is being sent to the terminal, the user can
press the quit key (normally CONlROL-\) or the interrupt key.
This causes pg to stop sending output, and display the prompt.
The user may then enter one of the above commands in the normal
manner. Unfortunately, some output is lost when this is done, due
to the fact that any characters waiting in the terminal's output
queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like
cat (1), except that a header is printed before each file (if there is
more than one).

EXAMPLES
A sample usage of pg in reading system news would be

news I Pg -p "(Page %d):"

NOTES
While waiting for terminal input, pg responds to the interrupt
character (CONTROL-C by default) by terminating execution.
Between prompts, however, the interrupt signal interrupts pg's
current task and place the user in prompt mode. These should be
used with caution when input is being read from a pipe, since an
interrupt is likely to terminate the other commands in the pipeline.

FILES

4

/usr/bin/pg
/usr/lib/terminfo/*
/tmp/pg*

February, 1990
RevisionC

pg(l) pg(l)

SEE ALSO
crypt(I), ed(l), grep(I), more(I), terminfo(4).

BUGS
H terminal tabs are not set every eight positions, undesirable
results may occur.

When using pg as a filter with another command that changes the
terminalI/O flag options (e.g., crypt(I», terminal settings may
not be restored correctly.

February, 1990
RevisionC

5

pic(l) pic(l)

NAME
pic - troff preprocessor for drawing pictures

SYNOPSIS
pic [-Ttty-type] [-] [file . ..]

DESCRIPTION
pic is a troff(1) preprocessor for drawing simple figures on a
typesetter. The basic objects are boxes, lines, arrows, circles, el­
lipses, arcs, and text.

The optional argument -Ttty-type specifies device tty-type;
currently supported are psc (POSTSCRIPT® device such as the
Apple LaserWriter®), iw (the Apple ImageWriter® II printer),
and aps (Autologic APS-5). The default is -Tpsc.

FILES
/usr/bin/pic

SEE ALSO
grap(1), troff(l), postscript(4).
"pic Reference" in A/UX Text Processing Tools.

1 February, 1990
RevisionC

pr(1) pr(l)

NAME
pr - format text for a print device

SYNOPSIS
pr [+k] [-k] [-a] [-d] [-eck] [-f] [-h head] [-ick] [-lk] [-m]
[-nck] [-ok] [-p] [-r] [-sc] [-t] [-wk] ffile ...]

DESCRIPTION
p r formats the named files on the standard output. If file is -, or
if no files are specified, the standard input is assumed. By default,
the listing is separated into pages, each headed by the page
number, a date and time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines which do not fit are truncated. If the -3 flag option is
used, lines are not truncated and columns are separated by the
separation character.

If the standard output is associated with a terminal, error messages
are withheld until pr has completed formatting.

FLAG OPTIONS
The flag options below may appear singly or be combined in any
order:

+k Begin formatting with page k (default is 1).

-k Produce k-column output (default is 1). The flag options
-e and -i are assumed for multicolumn output. Also, the
-k flag option must be used if the -w (column width) flag
option is used.

-a Print multicolumn output across the page.

-m Merge and format all files simultaneously, one per column
(overrides the -k, and -a flag options).

-d Double-space the output.

-eck Expand input tabs to character positions k+ 1, 2* k+ 1,
3 * k+ 1, etc. If k is 0 or is omitted, default tab settings at
every eighth position are assumed. Tab characters in the
input are expanded into the appropriate number of spaces.
If c (any nondigit character) is given, it is treated as the in­
put tab character (default for c is the tab character).

-ick In output, replace white space wherever possible by insert­
ing tabs to character positions k+l, 2* k+l, 3* k+l, etc. If k
is 0 or is omitted, default tab settings at every eighth posi-

February, 1990
Revision C

1

pr(l) pr(1)

tion are assumed. If c (any nondigit character) is given, it
is treated as the output tab character (default for c is the tab
character) .

-nck Provide k-digit line numbering (default for k is 5). The
number occupies the first k+ 1 character positions of each
column of normal output or each line of -m output If c
(any nondigit character) is given, it is appended to the line
number to separate it from whatever follows (default for c
is a tab).

-wk For multicolumn output, set the width of a line to k charac­
ter positions instead of the default 72 characters. This flag
option must be used with the -k (number of columns) flag
option.

-ok Offset each line by k character positions (default is 0). The
number of character positions per line is the sum of the
width and offset

-lk Set the length of a page to k lines (default is 66).

-h Use the next argument as the header instead of the file
name.

-p Pause before beginning each page if the output is directed
to a terminal (p r will ring the bell at the terminal and wait
for a carriage return).

-f Use form feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first
page if the standard output is associated with a terminal.

-r Print no diagnostic reports on failure to open files.

-t Print neither the five-line identifying header nor the five-
line trailer normally supplied for each page. Quit format­
ting after the last line of each file without spacing to the
end of the page.

-sc Separate columns by the single character c instead of by
the appropriate number of spaces (default for c is a tab).

EXAMPLES

2

pr -3dh "file list" file! file2

formats file! and file2 as a double-spaced, three-column list­
ing headed by "file list".

February, 1990
RevisionC

pr(l) pr(l)

pr -e9 -t < filel > file2

writes filel on file2, expanding tabs to columns 10, 19, 28,
37,

FILES
/bin/pr
/dev/tty*

SEE ALSO
cat(I), fmt(1), Ip(l), Ipr(1).

February, 1990
RevisionC

3

printenv(l) printenv(l)

NAME
printenv - display the value of variables set in the current
environment

SYNOPSIS
printenv [argument]

DESCRIPTION
printenv takes an environment variable name as an argument
and displays only the value of that variable. If no argument is
given, it displays the values for the entire environment.

Examples of environment variable names are:

HOME pathname of user's home directory.

SHELL the shell present at login.

PATH search path for binary programs.

TERM type of terminal used.

LOGNAME the login name of the user.

TERMCAP terminal capabilities string.

EXINIT a startup list of commands read by ex, edit and
vi.

The man page on the shell you are using (csh (1), ksh (1), or
sh (1» gives a complete list of the environment variables that ap­
ply to you.

EXAMPLES
printenv HOME

displays the pathname of your home directory.

FILES
/bin/printenv

SEE ALSO
csh(1), env(1), ksh(l), sh(I), stty(1), tset(I), en­
viron(5).

1 February, 1990
RevisionC

prof(1) prof(1)

NAME
prof - display profile data

SYNOPSIS
prof [-a] [-c] [-g] [-h] [-m mdata] [-n] [-0] [-s] [-t] [-x]
[-z] [prog]

DESCRIPTION
prof interprets the profile file produced by the moni tor(3C)
function. The symbol table in the object file prog (a. out by de­
fault) is read and correlated with the profile file (mon. out by de­
fault). For each external text symbol the percentage of time spent
executing between the address of that symbol and the address of
the next is printed, together with the number of times that function
was called and the average number of milliseconds per call.

FLAG OPTIONS
The mutually exclusive flag options t, c, a, and n determine the
type of sorting of the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive flag options 0 and x specify the printing
of the address of each symbol monitored:

-0 Print each symbol address (in octal) along with the symbol
name.

-x Print each symbol address (in hexadecimal) along with the
symbol name.

The following flag options may be used in any combination:

-g Include nonglobal symbols (static functions).

-z Include all symbols in the profile range (see moni tor(3C»,
even if associated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is
useful if the report is to be processed further.)

-s Print a summary of several of the monitoring parameters and
statistics on the standard error output.

-mmdata
Use file mdata instead of mon. out for profiling data.

February, 1990
Revision C

1

prof{l) prof(1)

For the number of calls to a function to be tallied, the -p flag op­
tion of cc(1) must have been given when the file containing the
function was compiled. This flag option to the cc command also
arranges for the object file to include a special profiling start-up
function that calls moni tor(3C) at the beginning and end of exe­
cution. It is the call to monitor at the end of execution that causes
the mon. out file to be written. Thus, only programs that call
exi t(2) or return from main cause the mon. out file to be pro­
duced.

FILES
/bin/prof
mon.out
a.out

for profile
for namelist

SEE ALSO
cc(1), nm(1), exi t(2), profil(2), moni tor(3C).

BUGS

2

There is a limit of 600 functions that may have call counters esta­
blished during program execution. If this limit is exceeded, other
data is overwritten and the mon. out file is corrupted. The
number of call counters used is reported automatically by the
prof command whenever the number exceeds 250.

February, 1990
RevisionC

prs(l) prs(1)

NAME
prs - display information about an sees file

SYNOPSIS
prs [-a] [-c [date-time]] [-d [dataspec]] [-e] [-1] [-r [SID]]
file ...

DESCRIPTION
prs displays, on the standard output, parts or all of an sees file
(see sccsfi1e(4)) in a user-supplied format. If a directory is
named, prs behaves as though each file in the directory were
specified as a named file, except that nonSeeS files (last com­
ponent of the pathname does not begin with s .), and unreadable
files are silently ignored. If a name of - is given, the standard in­
put is read; each line of the standard input is taken to be the name
of an sees file or directory to be processed; nonSeeS files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of
keyletter arguments and filenames.

All the described keyletter arguments apply independently to each
named file:

-d[dataspec] Used to specify the output data specification. The
dataspec is a string consisting of sees file data
keywords (see OAT A KEYWORDS) interspersed
with optional user-supplied text.

-r[SID] Used to specify the sees Identification (SID)
string of a delta for which information is desired.
If no SID is specified, the SID of the most recently
created delta is assumed. The fonnat for the date
is: mm/dd/yy [hh: mm: ss].

-e Requests information for all deltas created earlier
than and including the delta designated via the - r
keyletter or the date given by the -c flag option.

-1 Requests information for all deltas created later
than and including the delta designated via the - r
key letter or the date given by the -c flag option.

-c[date-time] Cutoff date-time, in the form: IT[MM[DD[
HH[MM[SS]]]]]. Units omitted from the the date­
time default to their maximum possible values;
that is, -c7502 is equivalent to
c750228235959. Any number of nonnumeric

February, 1990 1
Revision C

prs(l) prs(l)

characters may separate the various 2-digit pieces
of the cutoff date in the form: "-c 7 7 / 2 / 2
9:22:25".

-a Requests information for both removed, i.e., delta
type = R, (see rmdel(I» and existing, i.e., delta
type = D, deltas. If the -a key letter is not
specified, information for existing deltas only is
provided.

DATA KEYWORDS
Data keywords specify which parts of an sees file are to be re­
trieved and output. All parts of an sees file (see sccsfile(4»
have an associated data keyword. There is no limit on the number
of times a data keyword may appear in a dataspec.

The information displayed by prs consists of: (1) the user­
supplied text; and (2) appropriate values (extracted from the sees
file) substituted for the recognized data keywords in the order of
appearance in the dataspec. The format of a data keyword value
is either Simple (S), in which keyword substitution is direct, or
Multi-line (M), in which keyword substitution is followed by a
RETURN.

"User-supplied text" is any text other than recognized data key­
words. A tab is specified by \ t and RETURN/newline is specified
by \ n. The default data keywords are:

:Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:

TABLE 1. sees Files Data Keywords
Keyword Data Item File Section Value Format

: Ot: Delta infonnation
:OL: Delta line statistics

:1i: Lines inserted by Delta

:1d: Lines deleted by Delta
:1u: Lines unchanged by Delta

:OT: Delta type
:1 : sees ID string (SID)

:R: Release number
:1: Level number
:B: Branch number
:s: Sequence number
:0 : Date Delta created

:Oy: Year Delta created

:Om: Month Delta created

2

Delta Table See below* S
:Li:/:Ld:/:Lu: S

nnnnn S

nnnnn S

nnnnn S

DorR S
:R:.:L:.:B:.:S: S

nnnn S
nnnn S
nnnn S
nnnn S

:Dy:/:Dm:/:Dd: S

nn S

nn S

February, 1990
RevisionC

prs(l)

:Dd:
:T:

:Th:
:Tm:

:Ts:

:P:

:DS:
:DP:
:DI:
:Dn:
:Dx:
:Dg:
:MR:
:c:
:UN:
:FL:
:Y:

:MF:

:MP:

:KF:
:KV:
:BF:
:J:
:LK:
:Q:
:M:
:FB:
:CB:
:Ds:
:ND:
:FD:

:BD:
:GB:
:W:

:A:

: Z:

:F:
:PN:

Day Delta created

Time Delta created

Hour Delta created

Minutes Delta created

Seconds Delta created

Programmer who created Delta

Delta sequence number

Predecessor Delta seq-no.

Seq-no. of deltas incl., excl., ignored

Deltas included (seq #)
Deltas excluded (seq #)
Deltas ignored (seq #)
MR numbers for delta
Comments for delta
User names
Flag list
Module type flag
MR validation flag

MR validation pgm name

Keyword error/warning flag

Keyword validation string

Branchflag
Joint edit flag
Locked releases
User defined keyword
M rxiule name
Floor boundary
Ceiling boundary
Default SID
Null delta flag
File descriptive text

Body
Gotten brxiy
A fonn of what(l) string

A fonn of what(1) string

what(l) string delimiter

SCCS file name
SCCS file path name

* :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

EXAMPLES
The command

User Names
Flags

Comments

Brxiy

NIA

NIA

NIA

NIA
NIA

prs(l)

no

:Th:::Tm:::Ts:

no

no

no

logname

nnnn

nnnn

:Dn:/:Dx:/:Dg:

:DS::DS: .. .
:DS::DS: .. .
:DS::DS: .. .

text
text
text
text
text

yes or no

text

yes or no

text

yes or no
yes or no

:R: ...
text
text
:R:
:R:
:1:

yes or no
text

text
text

:Z::M:\t:I:
:Z::Y: :M: :I::Z:

@(#)

text
text

s
s
s
s
s
s
s
s
s
s
s
S
M
M
M
M
S
S

S

S

S

S
S
S
S
S
S
S
S
S
M
M
M
S
S
S

S
S

prs -d"User IDs for :F: are:\n:UN:" s.file

may produce on the standard output
User IDs for s.file are:

February, 1990
Revision C

3

prs(l) prs(l)

xyz
131
abc

The command

prs -d"Newest delta for pgm :PM:: \
:1: Created :0: By :P:" -r s.file

may produce on the standard output:
Newest delta for pgm main.c: C.7 Created 77/12/1 By cas

As a special case,
prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only keyletter ar­
gument allowed to be used with the special case is the -a
keyletter.

FILES
/usr/bin/prs
/tmp/pr?????

SEE ALSO
admin(l), cdc(l), comb(1), del ta(l), get(l), help(l),
rmdel(1), sact(1), sccs(1), sccsdiff(1), unget(l),
val(l), what(l), sccsfile(4).
"sees Reference" in AIUX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Use help(l) for explanations.

4 February, 1990
RevisionC

ps(l) ps(l)

NAME
ps - report process status

SYNOPSIS
ps [-e] [-d] [-a] [-f] [-1] [-ccorefile] [-sswapdev]
[-nnamelist] [-ttermlist] [-pproclist] [-uuidlist] [-ggrplist]

DESCRIPTION
ps prints certain information about active processes. Without flag
options, information is printed about processes associated with the
current terminal. The output consists of a short listing containing
only the process ID, terminal identifier, cumulative execution
time, and the command name. Otherwise, the information that is
displayed is controlled by the selection of flag options.

Flag options using lists as arguments may have the list specified in
one of two forms: a list of identifiers separated from one another
by a comma, or a list of identifiers enclosed in double quotes and
separated from one another by a comma and/or one or more
spaces.

The flag options are:

-e
-d

-a

-f

-1
-ccorefile
-sswapdev

-nnamelist

-ttermlist

February,1990
Revision C

Print information about all processes.
Print information about all processes, except pro­
cess group leaders.
Print information about all processes, except pro­
cess group leaders and processes not associated
with a terminal.
Generate a full listing. (See below for meaning of
columns in a full listing).
Generate a long listing. See below.
Use the file corefile in place of / dev /kmem.
Use the file swapdev in place of / dev / swap.
This is useful when examining a corefile; a swap­
devof / dev /nu11 will cause the user block to be
zeroed out.
The argument will be taken as the name of an al­
ternate namelist file in place of / unix.
Restrict listing to data about the processes associ­
ated with the terminals given in termlist. The
term list may be in one of two forms: a list of ter­
minal identifiers separated from one another by a
comma, or a list of terminal identifiers enclosed in
double quotes and separated from one another by a

1

ps(l) ps(l)

2

command and/or one or more spaces. Terminal
identifiers may be specified in one of two forms:
the device's filename (e.g., tty04), or, if the
device's filename starts with tty, just the digit
identifier (e.g., 04).

-pproclist Restrict listing to data about processes whose pro­
cess ID numbers are given in proclist.

-uuidlist Restrict listing to data about processes whose user
ID numbers or login names are given in uidlist. In
the listing, the numerical user ID will be printed
unless the -f flag option is used, in which case the
login name will be printed.

-ggrplist Restrict listing to data about processes whose pro-
cess group leaders are given in grplist.

The column headings and the meaning of the columns in a ps list­
ing are given below; the letters f and 1 indicate the option (full or
long), respectively, that causes the corresponding heading to ap­
pear; all means that the heading always appears. Note that these
two flag options determine only what information is provided for a
process; they do not determine which processes will be listed.

F (1)

s

Flags (hex and additive) associated with the pro-
cess:

o
1
2
4
8
10
20
100
200
400
1000
2000
4000
8000

swapped;
system process;
being traced by another process;
another tracing flag;
process cannot be woken by a signal;
in core;
locked in memory;
process group leader;
faulting in page
COFFbinary
process is using select system call
timing out during sleep
4.2-style job control
restore old mask after signal

(1) The state of the process:
nonexistent;

February, 1990
RevisionC

ps{l)

UID

PID

PPID

C

PRI

NI

ADDR

SZ

S sleeping;
R running;
I intermediate (between states);
Z terminated;
T stopped.
o as running on CPU
X waiting for virtual memory

(f,l)

ps(l)

The user ID number of the process owner; the login
name is printed under the -f flag option.

(all)
The process ID of the process; it is possible to kill a
process if you know this datum.

(f,l)
The process ID of the parent process.

(f,l)
Processor utilization for scheduling.

(1)
The priority of the process; higher numbers mean
lower priority.

(1)
Nice value; used in priority computation.

(1)
The memory address of the u-area (a pointer to
the page tables) of the process, if resident; other­
wise, the disk address.

(1)
The size in logical pages of the core image of the
process.

WCHAN (1)
The event for which the process is waiting or sleep­
ing; if blank, the process is running.

STIME (f)

Starting time of the process.
TTY (all)

The controlling terminal for the process.
TIME (all)

The cumulative execution time for the process.
COMMAND (all)

The command name; the full command name and
its arguments are printed under the -f flag option.

February, 1990
Revision C

3

ps(1) ps(l)

A process that has exited and has a parent, but has not yet been
waited for by the parent, is marked defunct.

Under the -f flag option, ps tries to determine the command
name and arguments given when the process was created by exa­
mining memory or the swap area. Failing this, the command
name, as it would appear without the -f flag option, is printed in
square brackets.

EXAMPLES
ps -ef

displays information about all processes, with or without termi­
nals.

FILES
/bin/ps
/unix
/dev/kmem
/dev/swap
/etc/passwd
/etc/ps_data
/dev

A/UXkernel
memory
the default swap device
supplies UID information
internal data structure
searched to find terminal (t t y) names

SEE ALSO
acctcom(l), kill(l), nice(l), pstat(I), w(I).

BUGS

4

Things can change while ps is running; the picture it gives is only
a close approximation to reality. Some data printed for defunct
processes are irrelevant.

Processes which are swapped onto other than the default swap
device (see swap(IM) will have some invalid information printed
out.

February, 1990
RevisionC

pSdit(l) pSdit(l)

NAME
psdit - convert troff intennediate format to POSTSCRIPT

format

SYNOPSIS
psdi t [-F fontdir] [-p prologue] [-0 list] [file]

DESCRIPTION
psdi t translates afile created by device-independent troff(l)
to POSTSCRIPT format for printing on a POSTSCRIPT printer. If no
file is mentioned, the standard input is used. The POSTSCRIPT file
is sent to the standard output. The flag options are

-F fontdir Take font information from fontdir instead of
the default, as described later in this section.

-p prologue Use the contents of prologue instead of the de­
fault POSTSCRIPT prologue, as described later in
this section.

-0 list Print pages whose numbers are given in the
comma-separated list. The list contains single
numbers n and ranges nl-n2. A missing nl
means the lowest-numbered page; a missing n2
means the highest.

Note: The input for psdi t should be prepared with the
corresponding -Tpsc option of troff, pic, grap, and
so forth. eqn should be run with the flags - r 57 6 and
-m2 to produce suitable output. pic should be run with
the -D flag option and the -T 5 76 flag option to set the
correct resolution.

psdi t allows for users to cause troff to include arbitrary
PoSTSCRIPT code in the generated PoSTSCRIPT file. psdi t
recognizes the heretofore undefined % command in the t ro f f in­
termediate file format to signal the start of raw POSTSCRIPT to be
placed "as is" in the the output file. Everthing between (but not
including) the percent sign and a line containing a single period
(.) will be placed in the generated POSTSCRIPT output. This
PoSTSCRIPT is not insulated from the t ro f f coordinate system or
from the state of the generated POSTSCRIPT. However, two func­
tions are defined in the prologue so that user's may insulate them­
selves, if they so desire. The PB function (for "picture begin")
will perform a POSTSCRIPT save operation, translate the
PoSTSCRIPT coordinate system to troff's idea of the current po-

February, 1990
Revision C

1

pSdit(l) psdit(1)

sition on the page, and change the scale and orienation of the
coordinate system axes to the standard POSTSCRIPT 72 units per
inch. The PE macro (for "picture end") will end this protected
environment.

Several methods may be employed to incorporate included
POSTSCRIPT into the troff intermediate file. The . cf . sy and
\! troff commands may be useful. For example, the following
sequence may appear anywhere in troff input

\!%PB
.cf mypic.ps
\!PE
\! .

to include mypic. ps as an illustration. This facility is both
powerful and useful, but indiscriminate inclusion of poorly
behaved POSTSCRIPT code may be dangerous to your document's
health.

EXAMPLES
The following command line will format the file ch. 1 using the
troff text formatting program, translate troff's output into
POSTSCRIPT, and then send the POSTSCRIPT output to the appropri­
ate printer.

troff -Tpsc -mm ch.l I psdit I Ip -dPigs

ENVIRONMENT
PSLIBDIR Pathname of a directory to use instead of

/usr/lib/ps forpsdit prologue.

FILES
/usr/bin/psdit
/usr/lib/font/devpsc/*

/usr/lib/ps/psdit.pro

SEE ALSO
Ip(I), Ipr(I), psroff(I), troff(I).

BUGS

t ro f f default descrip­
tion files for POSTSCRIPT
virtual device.
default POSTSCRIPT pro­
logue.

The B-splines generated by troff are drawn with an approxima­
tion. The functions D - and D - - in the prologue need a little
work.

2 February, 1990
RevisionC

psroff(1) psroff(l)

NAME
psroff - troff to a POSTSCRIPT printer

SYNOPSIS
psroff [-t] [troff-option ...] [spool-option ... J [lile ...]

DESCRIPTION
psroff is a shell script that runs troff(l) in an environment to
produce output on a PoSTSCRIPT printer. It uses psdi t to con­
vert t ro f f intennediate output to POSTSCRIPT format, and spools
this for printing. If no files are specified, the standard input is
used.

In addition to the standard troff options, the following options
are understood by psroff.

-t Send the POSTSCRIPT output to the standard output
rather than spooling it to a printer. Note that this
overrides the meaning of the troff -t option; if
that option is needed, then run troff directly.

The following spooler options are passed on to Ip.

-ddest

-nn

-h

-r

-s

-m

-w

Causes the output to be sent to the named destina­
tion.

Causes n copies of the output to be produced. The
default is one.

Suppresses the printing of the job burst page.

Doesn't page-reverse the output.

Suppresses messages from Ip.

Sends mail after files have been printed.

Writes to the user's tenninal after files have been
printed.

Using psroff is equivalent to using the standard pipeline of
commands

troff -Tpsc options I psdit I Ip options

Using psroff instead of this pipeline involves less typing, but
the entire sequence may take slightly more time since a shell script
will be executed.

February, 1990 1
Revision C

psroff(l) psroff(l)

ENVIRONMENT
LPDEST The name of a printer (as in the -d option)

for 1 p to use. If no -d option is specified,
1 p will use this printer. If neither -d nor
LPDEST is set, psroff will spool to a
printer class named PostScript.

FILES
/usr/bin/psroff
/usr/lib/tmac/tmac.*
/usr/lib/font/devpsc/*

standard macro files
t ro f f description files
for POSTSCRIPT virtual
device.

SEE ALSO
daiw(1), eqn(I), lpr(I), lp(I), pic(I), psdi t(1), refer(1),
tbl(1), troff(1).
"nroff/troff Reference" inAIUX Text Processing Tools.

BUGS

2

The eqn supplied with troff is different than the original. Use
the options -r576 -m2 for best results. Other programs (for ex­
ample, pic) distributed with troff have the device names com­
piled in (so much for device independence!). Use -T 576 with the
pic distributed with the Documenter's Workbench. If your out­
put is destined for an Apple ImageWriter II printer, use the -Tiw
flag option for both pic and eqn.

February, 1990
RevisionC

ptx(l) ptx(l)

NAME
ptx - make permuted index

SYNOPSIS
ptx [-b break] [-f] [-g gap] [-i ignore] [-0 only] [-r] [-t]
[-w n] [input [output]]

DESCRIPTION
ptx generates the file output that can be processed with a text for­
matter (nroff or troff) to produce a permuted index of file in­
put. Standard input (-) and standard output are default. ptx has
three phases: first, the permutation is done, generating one line for
each keyword in an input line. The keyword is rotated to the
front. Second, the permuted file is then sorted. Finally, the sorted
lines are rotated so the keyword comes at the middle of each line.
ptx output is in the following form:

. xx "tail" "before keyword" " keyword and after" " head"

where . xx is assumed to be an nroff(1) or troff(1) macro
provided by the user or provided by ptx(l). The mptx(5) macro
package provides the . xx macro definition. The before keyword
and keyword and after fields incorporate as much of the line as fits
around the keyword when it is printed. The tail and head fields, at
least one of which is always the empty string, are wrapped-around
pieces small enough to fit in the unused space at the opposite end
of the line.

FLAG OPTIONS
The following flag options can be applied:

- f Fold upper and lowercase letters for sorting.
-t Prepare the output for the phototypesetter.
-w n Use the next argument n as the length of the output

line. The default line length is 72 characters for
nroff and 100 for troff.

-g n Use the next argument n as the number of characters
that ptx reserves in its calculations for each gap
among the four parts of the line as finally printed.
The default gap is 3.

-0 only Use as keywords any words given in the file only.
This option cannot be used with the - i option.

- i ignore Do not use as keywords any words given the file ig­
nore. If the -i and -0 options are missing, use
/usr / lib/ eign as the file ignore. This option
cannot be used with the -0 option.

February, 1990
Revision C

1

ptx(l) ptx(l)

-b break Use the characters in the file break to separate
words. Tab, newline, and space characters are al­
ways used as break characters.

- r Take any leading nonblank characters of each input
line to be a reference identifier (as to a page or
chapter), separate from the text of the line. Attach
that identifier as a 5th field on each output line.

FILES
/usr/bin/ptx
/bin/sort
/usr/lib/eign
/usr/lib/tmac/tmac.ptx

SEE ALSO
troff(l), mm(5), mptx(5).

"Other Text Processing Tools, " in A/UX Text Processing Tools.

BUGS

2

Line-length counts do not account for overstriking or proportional
spacing. Lines that contain tildes C;') are botched because ptx
uses that character internally. ptx does not discard nonal­
phanumeric characters.

February, 1990
RevisionC

pwd(1) pwd(l)

NAME
pwd - print working directory name

SYNOPSIS
pwd

DESCRIPTION
pwd prints the pathname of the working (current) directory.

EXAMPLES
pwd

produces a pathname, such as /usr / games, indicating the direc­
tory you are currently in.

FILES
/bin/pwd

SEE ALSO
csh(l), ksh(1), sh(l).

DIAGNOSTICS
"Cannot open .. " and "Read error in ... " indicate
possible file system trouble and should be referred to a system ad­
ministrator.

February, 1990
Revision C

1

query(l) query(l)

NAME
que ry - query the user for input

SYNOPSIS
query [-tseconds] [-r[response]] [-m]

DESCRIPTION
By default, query reads a line from standard input and echoes it
to standard output. Options include:

-t [seconds]
Timeout after seconds seconds. If no input has been seen by
this time, que ry will echo the default response value to
standard output and standard error.

-r[response]
Change the default response to response. The default
response is y if not set with this option. The -r option is
only useful in conjunction with -to

-m Watch for a mouse click. If the mouse does get clicked, exit
status 2 is returned. Note: This option will be ignored if any
other program (such as a toolbox application) is currently us­
ing the mouse.

DIAGNOSTICS
Exit status is 0 if everything is OK, 1 for usage error, 2 if mouse is
pressed when query -m is in use.

FILES
fete/query

SEE ALSO
line(l).

February, 1990
RevisionC

1

rep(IC) rep(IC)

NAME
rep -remote file copy

SYNOPSIS
rep filel file2

rep [-r] file . .. directory

DESCRIPTION
rep copies files between machines. Each file or directory argu­
ment is either a remote filename of the form rhost: path or a local
filename (containing no : characters, or a / before a :).

If the - r option is specified and any of the source files are direc­
tories, rep copies each subtree rooted at that name; in this case
the destination must be a directory.

By default, the mode and owner of file2 are preserved if it already
existed; otherwise the mode of the source file modified by the
umask(2) on the destination host is used.

If path is not a full pathname, it is interpreted relative to the login
directory on rhost. A path on a remote host may be quoted (using
\, ", or ') so that the metacharacters are interpreted remotely.

rep does not prompt for passwords; the current local user name
must exist on rhost and allow remote command execution via
remsh(1N).

rep handles third party copies, where neither source nor target
files are on the current machine. Host names may also take the
form rname@rhost to use rname rather than the current user name
on the remote host.

EXAMPLES

1

The command

rep recipe doc:cake

copies the file recipe from the current directory and renames it
as cake in the remote login directory on doc.

The command

rep -r doc:Test .

creates a new directory Test below the current (local) directory.
The local Test contains copies of every file and subdirectory
contained in the remote Test on the machine doc. Note that
both examples assume that there is a login directory on doc and
that permissions are set correctly. See the section "Network Per-

February, 1990
Revision C

rcp(IC) rcp(IC)

missions" of "Using B-NET" in AIUX Communications User's
Guide for more information.

FILES
/usr/bin/rcp

SEE ALSO
cp(l), ftp(IC), remsh(IN), rlogin(IN).
"Using B-NET" in AIUX Communications User's Guide.

BUGS
rep doesn't detect all cases where the target of a copy might be a
file when only a directory should be legal.

rep is confused by any output generated by commands in a . lo­
gin, . profile, or . cshrc file on the remote host.

February, 1990
Revision C

2

res(l) res(l)

NAME
res - change RCS file attributes

SYNOPSIS
res [-i] [-alogins]] [-Aoldfile] [-e[logins]] [-estring]
[-l[rev]] [-u[rev]] [-L] [-U] [-nname[:rev]] [-Nname[:rev]]
[-orange] [-q] [-sstate[: rev]] [-t[txljile]] files

DESCRIPTION
res creates new RCS files or changes attributes of existing ones.
An RCS file contains multiple revisions of text, an access list, a
change log, descriptive text, and some control attributes. For res
to work, the caller's login name must be on the access list, unless
the access list is empty, the caller is the owner of the file or the su­
peruser, or the -i option is present.

Files ending in ,v are RCS files, and all others are working files.
If a working file is given, res tries to find the corresponding RCS
file, first in directory. IRCS and then in the current directory, as
explained in eo(I).

- i Creates and initializes a new RCS file, but does not
deposit any revision. If the ReS file has no path
prefix, res tries to place it, first into the subdirecto­
ry . IRCS and then into the current directory. If the
ReS file already exists, an error message is printed.

-alogins Appends the login names appearing in the comma­
separated list logins to the access list of the ReS file.

-Aoldfile Appends the access list of oldfile to the access list of
the ReS file.

-e[logins] Erases the login names appearing in the comma­
separated list log ins from the access list of the ReS
file. If 10 gins is omitted, the entire access list is
erased.

-estring Sets the comment leader to string. The comment
leader is printed before every log-message line gen­
erated by the keyword Log during checkout (see
eo). This is useful for programming languages
without multiline comments. During res -i or in­
itial ei, the comment leader is guessed from the
suffix of the working file.

1 February, 1990
RevisionC

res(l)

-1 [rev]

-u[rev]

-L

res(l)

Locks the revision with number rev. If a branch is
given, the latest revision on that branch is locked. If
rev is omitted, the latest revision on the trunk is
locked. Locking prevents overlapping changes. A
lock is removed with ei or res -u.

Unlocks the revision with number rev. If a branch is
given, the latest revision on that branch is unlocked.
If rev is omitted, the latest lock held by the caller is
removed. Normally, only the locker of a revision
may unlock it. Anyone else unlocking a revision
breaks the lock. This causes a mail message to be
sent to the original locker. The message contains a
commentary solicited from the breaker. The com­
mentary is terminated with a line containing a single
. or CONTROL-D.

Sets locking to strict. Strict locking means that
the owner of an RCS file is not exempt from locking
for checkin. This option should be used for files that
are shared.

-u Sets locking to non-strict. Non-strict locking means
that the owner of a file need not lock a revision for
checkin. This option should not be used for files that
are shared. The default (- L or - u) is determined by
your system administrator.

-nname[: rev]
Associates the symbolic name name with the branch
or revision rev. res prints an error message if name
is already associated with another number. If rev is
omitted, the symbolic name is deleted.

-Nname[: rev]
Same as -n, except that it overrides a previous as­
signment of name.

-orange Deletes (outdates) the revisions given by range. A
range consisting of a single revision number means
that revision. A range consisting of a branch
number means the latest revision on that branch. A
range of the form revl-rev2 means revisions revl to
rev2 on the same branch, -rev means from the be­
ginning of the branch containing rev up to and in­
cluding rev, and rev- means from revision rev to the

February, 1990
Revision C

2

rcs(l) res(l)

-q

end of the branch containing rev. None of the out­
dated revisions may have branches or locks.

Quiet mode; diagnostics are not printed.

- sstate[: rev]
Sets the state attribute of the revision rev to state. If
rev is omitted, the latest revision on the trunk is as­
sumed. If rev is a branch number, the latest revision
on that branch is assumed. Any identifier is accept­
able for state. A useful set of states is Exp (for ex­
perimental), Stab (for stable), and ReI (for
released). By default, ei sets the state of a revision
to Exp.

-t[txljile] Writes descriptive text into the RCS file and deletes
the existing text. If txljile is omitted, res prompts
the user for text supplied from the standard input,
terminated with a line containing a single . or
CONTROL-D. Otherwise, the descriptive text is
copied from the file txljile. If the - i option is
present, descriptive text is requested even if -t is
not given. The prompt is suppressed if the standard
input is not a terminal.

DIAGNOSTICS
The RCS filename and the revisions outdated are written to the di­
agnostic output. The exit status always refers to the last RCS file
operated upon, and is 0 if the operation was successful, 1 if other­
wise.

FILES
The caller of the command must have read/write permission for
the directory containing the RCS file and read permission for the
RCS file itself. res creates a semaphore file in the same directory
as the RCS file to prevent simultaneous update. For changes, res
always creates a new file. On successful completion, re s deletes
the old one and renames the new one. This strategy makes links
to RCS files useless.

DISCLAIMER

3

This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as

February, 1990
RevisionC

rcs(1) rcs(1)

the purchase of a site license from an author or institution.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN
47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci(1), co(1), ident(1), rcsdiff(1), rcsintro(1),
rcsmerge(1), rlog(1), rcsfile(4), sccstorcs(1M).
Walter F. Tichy, "Design, Implementation, and Evaluation of a
Revision Control System," in Proceedings of the 6th International
Conference on Software Engineering, IEEE, Tokyo, September
1982.

February, 1990
Revision C

4

resdiff(l) resdiff(l)

NAME
resdiff - compare ReS revisions

SYNOPSIS
resdiff [-biwt] [-eefhn] [-rrev}] [-rrev2] files

DESCRIPTION
resdiff runs diff(l) to compare two revisions of each ReS
file given. A filename ending in , v is an ReS filename, otherwise
a working filename. resdiff derives the working filename from
the ReS filename and vice versa, as explained in co(I). Pairs
consisting of both an ReS and a working filename may also be
specified.

All options except - r have the same effect as described in
diff(1).

If both rev} and rev2 are omitted, resdiff compares the latest
revision on the trunk with the contents of the corresponding work­
ing file. This is useful for determining what was changed since
the last checkin.

If rev} is given, but rev2 is omitted, resdiff compares revision
rev} of the ReS file with the contents of the corresponding work­
ing file.

If both rev} and rev2 are given, resdiff compares revisions
rev} and rev2 of the ReS file.

Both rev} and rev2 may be given numerically or symbolically.

EXAMPLES
The command

resdiff f.e

runs diff on the latest trunk revision of ReS file f. c, v and the
contents of working file f . e.

DISCLAIMER

1

This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

February, 1990
RevisionC

rcsdiff(l) rcsdiff(l)

IDENTIFICA nON
Author: Walter F. Tichy, Purdue University, West Lafayette, IN
47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci(I), co(1), diff(I), ident(I), rcs(I), rcsintro(1),
rcsmerge(I), rlog(I), rcsfile(4).
Walter F. Tichy, "Design, Implementation, and Evaluation of a
Revision Control System," in Proceedings of the 6th International
Conference on Software Engineering, IEEE, Tokyo, Sept. 1982.

February, 1990 2
Revision C

rcsmerge(l) rcsmerge(l)

NAME
rcsmerge - merge ReS revisions

SYNOPSIS
rcsmerge -rrev} [-rrev2] [-p] file

DESCRIPTION
rcsmerge incorporates the changes between rev} and rev2 of an
ReS file into the corresponding working file. If -p is given, the
result is printed on the standard output; otherwise the result
overwrites the working file.

A file name ending in " v' is an ReS file name, otherwise a work­
ing file name. rcsmerge derives the working file name from the
ReS file name and vice versa, as explained in co(I). A pair con­
sisting of both an ReS and a working file name may also be
specified.

rev} may not be omitted. If rev2 is omitted, the latest revision on
the trunk is assumed. Both rev1 and rev2 may be given numeri­
cally or symbolically.

rcsmerge prints a warning if there are overlaps and delimits the
overlapping regions as explained in co - j. The command is
useful for incorporating changes into a checked-out revision.

EXAMPLES

1

Suppose you have released revision 2.8 of f. c. Assume further
that you just completed revision 3.4, when you receive updates to
release 2.8 from someone else. To combine the updates to 2.8 and
your changes between 2.8 and 3.4, put the updates to 2.8 into file
f . c and execute the command:

rcsmerge -p -r2.8 -r3.4 f.c > f.merged.c

Then examine f .merged. c. Alternatively, if you want to save
the updates to 2.8 in the ReS file, check them in as revision
2.8.1.1 and execute co -j:

ci -r2.8.1.1 f.c
co -r3.4 -j2.8:2.8.1.1 f.c

As another example, the following command undoes the changes
between revision 2.4 and 2.8 in your currently checked out revi­
sion in f. c.

rcsmerge -r2.8 -r2.4 f.c

Note the order of the arguments and that f . c will be overwritten.

February, 1990
Revision C

rcsmerge(l) rcsmerge(l)

DISCLAIMER
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN,
47907.
Revision Number: 3.0; Release Date: 83/01/15.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci(l), co(l), merge(l), ident(l), rcs(1), rcsdiff(l).
rlog(1), rcsfile(4).
Walter F. Tichy, "Design, Implementation, and Evaluation of a
Revision Control System," in Proceedings of the 6th International
Conference on Software Engineering, IEEE, Tokyo, Sept. 1982.

BUGS
rcsmerge does not work for files that contain lines with a single

February, 1990
Revision C

2

rcvhex(l) rcvhex(l)

NAME
rcvhex - receive and convert Motorola S-records from a port
toa file

SYNOPSIS
rcvhex [-p port] [-c command]file

DESCRIPTION
rcvhex translates Motorola S-records shipped from a port into a
file. The following flag options are available:

p port specifies an alternate port for reception; the default
port is /dev /ttyO.

c command ship the specified command (in quotes) over the re­
mote port; the default is to not ship anything.

ifile File to be created by rcvhex.

The file's starting address must be zero and successive records
must be sequential.

FILES
/usr/bin/rcvhex

SEE ALSO
/usr /bin/hex(1).

1 February, 1990
RevisionC

rdist(1) rdist(l)

NAME
rdist - remote file distribution program

SYNOPSIS
rdist [-nqbRhivwy] [-fdistfile] [-dvar=value] [-mhost]
[name .. .]

rdist [-nqbRhivwy] -c name ... [login@] host [:dest]

DESCRIPTION
rdist is a program to maintain identical copies of files over mul­
tiple hosts. It preserves the owner, group, mode, and mtime (see
stat(2)) of files if possible and can update programs that are ex­
ecuting. rdist reads commands from distfile to direct the updat­
ing of files and/or directories. If distfile is "-", the standard input
is used. If the -f flag option is not present, the program looks first
for distfile, then Distfile to use as the input. If no names are
specified on the command line, rdi s t will update all of the files
and directories listed in distfile. Otherwise, the argument is taken
to be the name of a file to be updated or the label of a command to
execute. If label and file names conflict, it is assumed to be a la­
bel. These may be used together to update specific files using
specific commands.

The -c flag option forces rdist to interpret the remaining argu­
ments as a small distfile. The equivalent distfile is as follows.

(name ...) -> [/ogin@]host
install [dest];

Other flag options:

-d Define var to have value. The -d flag option is used to
define or override variable definitions in the distfile. value
can be the empty string, one name, or a list of names sur­
rounded by parentheses and separated by tabs and/or spaces.

-m Limit which machines are to be updated. Multiple -m argu­
ments can be given to limit updates to a subset of the hosts
listed in distfile.

-n Print the commands without executing them. This flag option
is useful for debugging distfile.

-q Quiet mode. Files that are being modified are normally print­
ed on standard output. The -q option suppresses this.

-R Remove extraneous files. If a directory is being updated, any
files that exist on the remote host that do not exist in the mas-

February, 1990 1
RevisionC

rdist(l) rdist(l)

2

ter directory are removed. This is useful for maintaining
truely identical copies of directories.

-h Follow symbolic links. Copy the file that the link points to
rather than the link itself.

-i Ignore unresolved links. rdist will normally try to main­
tain the link structure of files being transfered and warn the
user if all the links cannot be found.

-v Verify that the files are up to date on all the hosts. Any files
that are out of date will be displayed but no files will be
changed nor any mail sent.

-w Whole mode. The whole file name is appended to the desti­
nation directory name. Normally, only the last component of
a name is used when renaming files. This will preserve the
directory structure of the files being copied instead of flatten­
ing the directory structure. For example, renaming a list of
files such as (dirl/fl dir2/f2) to dir3 would create
files dir3/dirl/fl and dir3/dir2/f2 instead of
dir3/fl and dir3/f2.

-y Younger mode. Files are normally updated if their mtime and
size (see stat(2)) disagree. The -y option causes rdist
not to update files that are younger than the master copy.
This can be used to prevent newer copies on other hosts from
being replaced. A warning message is printe<l for files which
are newer than the master copy.

-b Binary comparison. Perform a binary comparison and update
files if they differ rather than comparing dates and sizes.

distfile contains a sequence of entries that specify the files to be
copied, the destination hosts, and what operations to perform to do
the updating. Each entry has one of the following formats.

<variable name> = <name list>
[label:] <source list> -> <destination list> <command list>
[label:] <source list> : : <time _stamp file> <command list>

The first format is used for defining variables. The second format
is used for distributing files to other hosts. The third format is
used for making lists of files that have been. changed since some
given date. The source list specifies a list of files and/or direc­
tories on the local host which are to be used as the master copy for
distribution. The destination list is the list of hosts to which these
files are to be copied. Each file in the source list is added to a list

February, 1990
RevisionC

rdist(1) rdist(l)

of changes if the file is out of date on the host which is being up­
dated (second format) or the file is newer than the time stamp file
(third format).

Labels are optional. They are used to identify a command for par­
tial updates.

Newlines, tabs, and blanks are only used as separators and are oth­
erwise ignored. Comments begin with "'*" and end with a new­
line.

Variables to be expanded begin with "$" followed by one char­
acter or a name enclosed in braces (see the examples at the end).

The source and destination lists have the following format:

<name>

or

" (" <zero or more names separated by white-space> ") "

The shell metacharacters " [", "] ", "{", "} ", "*", and "?"
are recognized and expanded (on the local host only) in the same
way as cSh(l). They can be escaped with a backslash. The" -"
character is also expanded in the same way as csh but is expand­
ed separately on the local and destination hosts. When the -w flag
option is used with a file name that begins with" -", everything
except the home directory is appended to the destination name.
File names which do not begin with "/" or "-" use the destina­
tion user's home directory as the root directory for the rest of the
file name.

The command list consists of zero or more commands of the fol­
lowing format.

install <options> opt_dest_name ;
notify <name list> ;
except <name list> ;
except _pa t <pattern list> ;
special <name list> string;

The install command is used to copy out of date files and/or
directories. Each source file is copied to each host in the destina­
tion list. Directories are recursively copied in the same way.
opt dest name is an optional parameter to rename files. If no
install command appears in the command list or the destina­
tion name is not specified, the source file name is used. Direc-

February, 1990
RevisionC

3

rdist(1) rdist(1)

4

tories in the path name will be created if they do not exist on the
remote host. To help prevent disasters, a nonempty directory on a
target host will never be replaced with a regular file or a symbolic
link. However, under the -R flag option a nonempty directory
will be removed if the corresponding filename is completely ab­
sent on the master host. The options are -R, -h, -i, -v, -w, -y,
and -b and have the same semantics as options on the command
line except they only apply to the files in the source list The login
name used on the destination host is the same as the local host un­
less the destination name is of the format "login@host".

The command is used to mail the list of files updated (and any er­
rors that may have occured) to the listed names. If no "@" ap­
pears in the name, the destination host is appended to the name
(e.g., name}@host, name2@host, . ..) .

The except command is used to update all of the files in the
source list except for the files listed in name list. This is usually
used to copy everything in a directory except certain files.

The except ya t command is like the except command ex­
cept that pattern list is a list of regular expressions (see ed(l) for
details). If one of the patterns matches some string within a file
name, that file will be ignored. Note that since "\" is a quote
character, it must be doubled to become part of the regular expres­
sion. Variables are expanded in pattern list but not shell file pat­
tern matching characters. To include a $, it must be escaped with
"\' , .
The special command is used to specify sh(l) commands that
are to be executed on the remote host after the file in name list is
updated or installed. If the name list is omitted then the shell com­
mands will be executed for every file updated or installed. The
shell variable FILE is set to the current filename before executing
the commands in string. string starts and ends with" and can
cross multiple lines in distfile. Multiple commands to the shell
should be separated by ;. Commands are executed in the user's
home directory on the host being updated. The special com­
mand can be used to rebuild private databases, etc. after a pro­
gram has been updated.

The following is a small example.
HOSTS = (matisse root@arpa)

FILES = (/bin /lib /usr/bin /usr/games

February, 1990
RevisionC

rdist(1) rdist(1)

/usr/include/{*.h,{stand,sys,vax*,pascal,machine}/*.h}
/usr/lib /usr/man/man? /usr/ucb /usr/local/rdist)

EXLIB = (Mail.rc aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sendmail.fc sendmail.hf sendmail.st uucp vfont

${FILES} -> ${HOSTS}
install -R ;
except /usr/lib/${EXLIB}
except /usr/games/lib ;
special /usr/lib/sendmail "/usr/lib/sendmail -bz"

srcs:
/usr/src/bin -> arpa

except_pat (\\.0\$ /SCCS\$

IMAGEN = (ips dviimp catdvi)

imagen:
/usr/local/${IMAGEN} -> arpa

install /usr/local/lib
notify ralph ;

${FILES} :: stamp.cory
notify root@cory ;

FILES
/usr/bin/rdist
distfile
/tmp/rdist*

SEE ALSO

input command file
temporary file for update lists

sh(1), csh(1), stat(2).

DIAGNOSTICS
A complaint about mismatch of rdist version numbers may really
stem from some problem with starting your shell, e.g., you are in
too many groups.

BUGS
Source files must reside on the local host where rdist is execut­
ed.

There is no easy way to have a special command executed after all
files in a directory have been updated.

Variable expansion only works for name lists; there should be a
general macro facility.

February, 1990 5
Revision C

rdist(l) rdist{l)

6

rdist aborts on files which have a negative mtime (before Jan 1,
1970).

There should be a "force" option to allow replacement of
nonempty directories by regular files or symlinks. A means of
updating file modes and owners of otherwise identical files is also
needed.

February, 1990
RevisionC

red(l)

February, 1990
Revision C

See ed(l)

red(l)

1

refer(l) refer(l)

NAME
refer - find and insert literature references in documents

SYNOPSIS
refer [-a[n]] [-b] [-c keys] [-e] [-fn] [-kx] [-l[m, n]]
[-n] [-p bib] [-s keys] [-Bl. m] [-p] [-s] [file ...]

DESCRIPTION
refer is a preprocessor for nroff(l) or troff(l) that finds
and formats references for footnotes or endnotes. It is also the
base for a series of programs designed to index, search, sort, and
print stand-alone bibliographies, or other data entered in the ap­
propriate form.

Given an incomplete citation with sufficiently precise keywords,
refer searches a bibliographic database for references contain­
ing these keywords anywhere in the title, author, journal, and so
forth. The input file (or standard input) is copied to standard out­
put, except for lines between . [and .] delimiters, which are as­
sumed to contain keywords and are replaced by information from
the bibliographic database. The user may also search different da­
tabases, override particular fields, or add new fields. The refer­
ence data, from whatever source, is assigned to a set of troff
strings. Macro packages such as ms(5) print the finished refer­
ence text from these strings. By default, references are flagged by
footnote numbers.

FLAG OPTIONS

1

The following flag options are available.

-an Reverse the first n author names, for example, Jones, J. A.
instead of J. A. Jones. If n is omitted, all author names are
reversed.

-b Bare mode: do not put any flags in text (neither numbers
nor labels).

-ckeys
Capitalize (with CAPS SMALL CAPS) the fields whose key­
letters are in keys.

-e Instead of leaving the references where encountered, accu-
mulate them until a sequence of the form

. [
$LIST$
.]

February, 1990
Revision C

refer(l) refer(1)

is encountered, and then write out all references collected
so far and collapse the references to the same source.

-fn Set the footnote number to n instead of the default of 1.
With labels rather than numbers, this flag is a no-oPe

- kx Instead of numbering references, use labels as specified in
a reference data line beginning %x. By default, x is L.

-lm,n
Instead of numbering references, use labels made from the
senior author's last name and the year of publication. Only
the first m letters of the last name and the last n digits of
the date are used. If either m or n is omitted, the entire
name or date is used.

-n Do not search /usr/dict/papers/lnd, the default
file. If there is a REFER environment variable, the
specified file is searched instead of the default file; in this
case the -n flag has no effect.

-p bib
Take the next argument bib as a file of references to be
searched. The default file is searched last.

-s keys

-Bl.m

Sort references by fields whose key letters are in the keys
string; permute the reference numbers in text accordingly.
This flag option implies -e. The key letters in keys may be
followed by a number to indicate how many such fields are
used, with + taken as a very large number. The default is
AD, which sorts on the senior author and then date. To
sort, for example, on all authors and then, the title, use -
sA+T.

Bibliography mode: take a file composed of records
separated by blank lines and tum them into troff input.
Labell is turned into the macro. m with I defaulting to %X
and . m defaulting to . AP (annotation paragraph).

- P Place punctuation marks (. , : ; ? !) after the reference
signal rather than before. (periods and commas used to be
done with strings.)

-s Produce references in the Natural or Social Science for­
mat.

February, 1990
Revision C

2

refer(l) refer(l)

To use your own references, put them in the format described
below. When refer is used with the eqn, neqn, or tbl
preprocessors, refer should be first, to minimize the volume of
data passed through pipes.

The refer preprocessor and associated programs expect input
from a file of references composed of records separated by blank
lines. A record is a set of lines (fields), each containing one kind
of information. Fields start on a line beginning with a %, followed
by a keyletter, then a blank, and finally the contents of the field,
which continue until the next line starting with %. The output ord­
ering and formatting of fields is controlled by the macros specified
for nroff/troff (for footnotes and endnotes) or roffbib (for
stand-alone bibliographies). For a list of the most common key­
letters and their corresponding fields, see addbib(l). An exam­
ple of a refer entry is given below.

EXAMPLES
%A T. Monroe
%T Creating Inverted Indexes
%B Text Processing Guide
%V 2.6b
%I Data Systems
%C Berkeley, California
%D 1998

FILES
/usr/ucb/refer
/usr/dict/papers

/usr/lib/refer

Directory of default publica­
tion lists
Directory of companion pro­
grams

SEE ALSO
addbib(1), indxbib(l), lookbib(l), roffbib(l),
sortbib(I).

BUGS

3

Blank spaces at the end of lines in bibliography fields will cause
the records to sort and reverse incorrectly. Sorting large numbers
of references causes a core dump.

February, 1990
RevisionC

regcmp(l) regcmp(l)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-]file ...

DESCRIPTION
regcmp, in most cases, precludes the need for calling
regcmp(3X) from C programs. This saves on both execution
time and program size. The command regcmp compiles the reg­
ular expressions in file and places the output in file. i. If the -
flag option is used, the output will be placed in file . c. The fonnat
of entries in file is a name (C variable) followed by one or more
blanks followed by a regular expression enclosed in double
quotes. The output of regcmp is C source code. Compiled regu­
lar expressions are represented as extern char vectors. file. i
files may thus be included into C programs, or file. c files may be
compiled and later loaded. In the C program which uses the
regcmp output, regex(abc,line) will apply the regular expression
named abc to line. Diagnostics are self-explanatory.

EXAMPLES
name" ([A-Za-z] [A-Za-zO-9_] *) $0"

telno
" \ ({ 0, I} ([2-9] [01] [1-9]) $ 0 \) {O, I} *"
" ([2-9] [0-9] {2}) $1 [-] { 0, 1 } "
" ([0-9] {4}) $2' ,

In the C program that uses the

regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

FILES
/usr/bin/regcmp

SEE ALSO
cc(1), lex(l), regcmp(3X).

February,1990
Revision C

1

remlogin(lN) remlogin(lN)

NAME
remlogin - remote sign on

SYNOPSIS
remlogin

DESCRIPTION
The remlogin command is used when a user initially signs on
from a remote host

When remlogin is invoked from a virtual terminal server pro­
cesst it asks for a user namet andt if appropriatet a password.
Echoing is turned off (if possible) during the typing of the pass­
wordt so it will not appear on the written record of the session.

After a successful logint accounting files are updated and the user
is informed of the existence of mail. The message of the day is
printedt as is the time of his last login. Both are suppressed if he
has a . hushlogin file in his home directory; this is mostly used
to make life easier for non-human userst such as uucp.

remlogin initializes the user and group IDs and the working
directorYt then executes a command interpreter (usually csh(l»
according to specifications found in a password file. Argument 0
of the command interpreter is the name of the command inter­
preter with a leading dash (-).

remlogin also modifies the environment environ(7) with in­
formation specifying home directory t command interpreter t termi­
nal type (if available) and user name.

If the file /etc/nologin existst login prints its contents on
the userts pseudo terminal and exits. This is used by
shutdown(lM) to stop users logging in when the system is about
to go down.

FILES

1

/usr/spool/mail/*
/etc/utmp
/usr/adm/wtmp
/usr/spool/mail/*
/etc/motd
/etc/passwd
/etc/nologin
.hushlogin

accounting
accounting
mail
message-of-the-day
password file
stops logins
makes login quieter

February t 1990
RevisionC

remlogin(IN) remlogin(1N)

SEE ALSO
mail(I), passwd(I), getty(IM), rlogind(1M),
telnetd(1M), init(lM). shutdown(1M), rlogin(IN).
passwd(5). environ(7).

DIAGNOSTICS
Login incorrect

if the name or the password is bad.

No Shell
cannot open password file

no directory
consult a system administrator.

BUGS
remlogin uses two undocumented options. -r is used by the
remote login server, rlogind(IM) to force remlogin to enter
into an initial connection protocol. -h is used by telnetd(IM)
and other servers to list the host from which the connection was
received.

February, 1990 2
Revision C

remsh(IN) remsh(IN)

NAME
remsh -remote shell

SYNOPSIS
rems h rhost [-1 username] [-n] [command]

DESCRIPTION

1

remsh connects to a specified remote host, rhost, and executes a
specified remote command (command) via a local network. On
the remote side, you get whatever shell is set up for that account.
remsh copies its standard input to the remote command, the stan­
dard output of the remote command to its standard output, and the
standard error of the remote command to its standard error. Inter­
rupt, quit, and terminate signals are propagated to the remote com­
mand; remsh normally terminates when the remote command
does.

The remote user name used is the same as your local user name,
unless you specify a different remote name with the -1 flag op­
tion. The remote account must have its rhosts file set up to
grant you permission to log in without prompting you for the pass­
word; no provision is made for specifying a password with a com­
mand.

If you omit command, then instead of executing a single com­
mand' you are logged in on the remote host using rlogin(1N).

If you stipulate the -n flag option, the standard input is redirected
to /dev/null.

Shell metacharacters that are not quoted are interpreted on the lo­
cal machine while quoted metacharacters are interpreted on the re­
mote machine. Thus the command

remsh rhost cat remotefile » localfile

appends the remote file remotefile to the local file local­
file, while

remsh rhost cat remotefile "»" remotefile. 2

appends remotefile to remotefile. 2.

Host names are given in the file / etc/hosts. Each host has
one standard name (the first name given in the file), which is rath­
er long and unambiguous, and optionally one or more nicknames.
The rhost names for local machines may also be commands in the
directory /usr/hosts; these names must be linked to the
remsh binaries. If you put this directory in your search path,

February, 1990
RevisionC

remsh(IN) remsh(IN)

then the rems h may be omitted, as in the second form of the
command, above.

Using remsh, you cannot run an interactive command (like
vi(l)); instead, use rlogin(1N).

FILES
/usr/bin/remsh
fete/hosts
/usr/hosts/*

SEE ALSO
rlogin(IN), telnet(IN).

February, 1990
Revision C

2

reset(l)

See tset(1)

1

reset(l)

February, 1990
RevisionC

revel) revel)

NAME
rev - reverse characters within each line of text

SYNOPSIS
rev [file] ...

DESCRIPTION
rev copies the named files to the standard output, reversing the
order of characters in every line. If no file is specified, the stan­
dard input is copied.

FILES
/usr/ucb/rev

February, 1990
Revision C

1

rez(l) rez(l)

NAME
re z - compile resources

SYNOPSIS
rez [option] ... [resource-description-file] ...

DESCRIPTION

1

re z creates a resource file according to a textual series of state­
ments in the resource-description language developed for Macin­
tosh resources. The resource-description language is described in
an appendix of AIUX Toolbox.

The resource-description-file parameter represents the names of
one or more files containing resource descriptions. If no filenames
are specified, re z accepts keyboard input.

The data used to build the resource file can come directly from
one or more resource-description files, from other text files
(through #include and read directives in the resource­
description file), and from other resource files (through the in­
cl ude directive in the resource-description file). The type de­
clarations for standard Macintosh resources are contained in the
files types. r and systypes. r located in the directory
/usr/lib/mac/rincludes.

re z includes macro processing, full expression evaluation, built­
in functions, and system variables.

re z never sends output to standard output. By default, re z
writes to a file named rez. Out in the current directory. You can
specify a different output file with the -0 option.

If no errors or warnings are detected, re z runs silently. Errors
and warnings are written to standard error.

re z returns one of the following status values.

o No errors

1 Error in parameters

2 Syntax error in file

3 I/O or program error

You may specify one or more of the following options.

-align[wordllongword]
Align resources along word or longword boundaries. This
may allow the Resource Manager to load these resources fas­
ter. The -align option is ignored when the -a option is in

February. 1990
Revision C

rez(1) rez(l)

effect.

-a [ppend]
Output from re z is appended to the output file instead of re­
placing the output file.

Note: rez overwrites any existing resource of the
same type and ID without a warning message. re z
cannot append resources to a resource file in which
the Read Only bit is set. Also, rez cannot replace
a resource file that has a protection bit set. See also
the -ov option below.

-c[reator] creator-expr
Set the creator of the output file. (The default value is
???? .)

-d[efine] macro [=data]
Define the macro variable macro to have the value data. If
data is omitted, then macro is set to the null string (this still
means that macro is defined). The -d option is the same as
writing

4I=define macro [data]

at the beginning of the input.

-ipathname(s)
Search the specified pathnames for include files. You may
specify more than one pathname. The paths are searched in
the order they appear in the command line.

To reach the include files provided with the NUX Toolbox,
use this pathname

rez -i /usr/lib/mac/rincludes

-0 output-file

-ov

Place the output in output-file. Specify the name of the asso­
ciated data file; re z automatically affixes a percent sign (%)
to the name of the header file containing the resources. The
default output file is re z . AU t.

Override the protected bit when replacing resources with the
-a option.

-p[rogress]
Write version and progress information to diagnostic output.

February, 1990
Revision C

2

rez(1) rez(l)

-rd
Suppress warning messages if a resource type is redeclared.

-ro
Set the mapReadOnly flag in the resource map.

- s pathname(s)
Search the specified pathnames for resource include files.

-t[ype] type-expr
Set the type of the output file. The default value is APPL.

-u[ndef] macro
Undefine the macro variable macro. This is the same as writ­
ing

#undef macro

at the beginning of the input. It is meaningful to undefine the
preset macro variables only. (See Appendix C of the docu­
ment A/UX Toolbox for a description of macro variables.)

EXAMPLES
rez -i /usr/lib/mac/rincludes sample.r -0 sample

generates a resource file for sample, based on the descriptions in
sample. r and the include files
/usr/lib/mac/ rincludes. Place
AppleDouble header file named %sample.

FILES
/mac/bin/rez

SEE ALSO
derez(I).

3

in the directory
the output in an

February, 1990
RevisionC

rlog(l) rlog(l)

NAME
rlog - display log messages and other information about ReS
files

SYNOPSIS
rlog [-L] [-R] [-h] [-t] [-ddates] [-l[lockers]]
[-rrevisions] [-sstates] [-w[logins]] files

DESCRIPTION
r log displays information about ReS files. Files ending in , v
are ReS files, all others are working files. If a working file is
given, rlog tries to find the corresponding ReS file, first in direc­
tory . IRes and then in the current directory, as explained in
co(I).

rlog displays the following information for each ReS file: ReS
filename, working filename, head (that is, the number of the latest
revision on the trunk), access list, locks, symbolic names, suffix,
total number of revisions, number of revisions selected for
display, and descriptive text. This is followed by entries for the
selected revisions in reverse chronological order for each branch.
For each revision, rlog displays revision number, author, date
and time, state, number of lines added or deleted (with respect to
the previous revision), locker of the revision (if any), and log mes­
sage. Without options, rlog displays complete information. The
options below restrict this output.

FLAG OPTIONS
The following flag options are interpreted by r log:

- L Ignores ReS files that have no locks set; convenient
in combination with -R, -h, or-l.

-R Prints only the name of the ReS file; convenient for
translating a working filename into an ReS filename.

- h Prints only ReS filename, working filename, head,
access list, locks, symbolic names, and suffix.

-t Prints the same as -h, plus the descriptive text.

-ddates Prints information about revisions with a checkin date
and time in the ranges given by the semicolon­
separated list of dates. A range of the form dl <d2 or
d2>dl selects the revisions that were deposited
between dl and d2 (inclusive). A range of the form
<d or d> selects all revisions dated d or earlier. A
range of the form d< or >d selects all revisions dated

February, 1990 1
Revision C

rlog(l) rlog(l)

-1 [lockers]

- rrevisions

d or later. A range of the form d selects the single, la­
test revision dated d or earlier. The date and time
strings d, dl, and d2 are in the free format explained
in co(l). Quoting is normally necessary, especially
for < and>. Note that the separator is a semicolon.

Prints information about locked revisions. If the
comma-separated list lockers of login names is given,
only the revisions locked by the given login names
are displayed. If the list is omitted, all locked revi­
sions are displayed.

Prints information about reVISIons given in the
comma-separated list revisions of reVISIOns and
ranges. A range revl-rev2 means revisions revl to
rev2 on the same branch, -rev means revisions from
the beginning of the branch up to and including rev,
and rev- means revisions starting with rev to the end
of the branch containing rev. An argument that is a
branch means all revisions on that branch. A range of
branches means all revisions on the branches in that
range.

-5states Prints information about revisions whose state attri­
butes match one of the states given in the comma­
separated list states.

-w[iogins] Prints information about revisions checked in by users
with login names appearing in the comma-separated
list logins. If logins is omitted, the user's login is as­
sumed.

r log displays the intersection of the revisions selected with the
options -d, -1, -5, and -w, intersected with the union of the revi­
sions selected by -band - r.

EXAMPLES

2

The following are some examples of using r 1 og.

rlog -L -R RCS/*,v
rlog -L -h RCS/*,v
r10g -L -1 RCS/*,v
r10g RCS/*,v

The first command displays the names of all ReS files in the sub-

February, 1990
Revision C

rlog(1) rlog(1)

directory ReS which have locks. The second command displays
the headers of those files, and the third displays the headers plus
the log messages of the locked revisions. The last command
displays complete information.

DIAGNOSTICS
The exit status always refers to the last RCS file operated upon,
and is 0 if the operation was successful, 1 if otherwise.

DISCLAIMER
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public-domain utility for your
convenience and for use at your own discretion.

The source code is normally found in / us r / s rc or is made
available through the Apple Programmer's and Developer's Asso­
ciation (APDA TM). This source code should also be used at your
own risk and without support from Apple.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN
47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci(1), co(1), ident(1), rcs(1), rcsdiff(I), rcsintro(I),
rcsmerge(I), rcsfile(4), sccstorcs(lM).
Walter F. Tichy, "Design, Implementation, and Evaluation of a
Revision Control System," in Proceedings of the 6th International
Conference on Software Engineering, IEEE, Tokyo, Sept. 1982.

February, 1990
Revision C

3

rlogin(1N) rlogin(1N)

NAME
rlogin -remote login

SYNOPSIS
rlogin rhost [-8] [-eel [-1 username]

DESCRIPTION

1

rlogin connects your tenninal on the current local host system
Ihost to the remote host system rhost via a local network. On the
remote side, you get whatever shell is set up for that account.

Each host has a file /ete/hosts. equiv which contains a list
of rhosts with which it shares account names. (The hosts names
must be the standard names as described in remsh(1N)). When
you rlogin as the same user on an equivalent host, you don't
need to give a password. Each user may also have a private
equivalence list in a file . rhosts in his login directory. Each
line in this file should contain a rhost and a username separated by
a space, giving additional cases where logins without passwords
are to be permitted. If the originating user is not equivalent to the
remote user, then a login and password will be prompted for on
the remote machine as in login(1). To avoid security problems,
the . rhosts file must be owned by either the remote user or
root. Note that, for security reasons, root is an exception to the
above; a superuser on an equivalent host must still supply the
password to login as root unless the root account has its own
private equivalence list in a file . rhosts in the root directory.
Note that a . rhosts file for a root account is not recommended
where secure systems are required.

Your remote terminal type is the same as your local terminal type
(as given in your environment TERM variable). All echoing takes
place at the remote site, so that (except for delays) the rlogin is
transparent. Flow control via CONIROL-S and CONTROL-Q and
flushing of input and output on interrupts are handled properly.

The -8 flag option allows an eight-bit data path; otherwise parity
bits are stripped.

Tilde C) is the default escape character. A line of the form "- . "
(where" -" is the escape character), disconnects the current job
from the remote host.

The escape sequence "-CONTROL-Z" stops the rlogin process
and returns control to the local machine where the r login was
initiated. This applies only if the initiating shell allows job control

February, 1990
RevisionC

rlogin(lN) rlogin(lN)

(csh(1) or ksh(1». If your terminal suspend character (see
st ty(l» is not CONTROL-Z, substitute that character for
CONTROL-Z where applicable.

Another function of the escape character applies to nested rlo­
gins. With multiple levels of rlogins, escapes can be sent to a
specified level. When performing rlogins inside other rlo­
gins, an escape CCONTROL-Z) returns control to the original
shell from which the first rlogin was initiated. However, con­
trol can be returned to other rlogin processes in the middle by
varying the number of tildes.

If you supply two tildes, the rlogin shell invoked by the first
rlogin becomes active. If you supply three tildes, the rlogin
shell invoked by the rlogin shell invoked by the first rlogin
becomes active, and so on.

For example, if you begin on machine A, then rlogin to
machine B, then rlogin to machine C, "-CONTROL-Z" returns
you to machine A; "--CONTROL-z" returns you to machine B, etc.

A different escape character can be specified with the -e flag op­
tion:

rlogin -ex

defines the character "x" as the escape character, with no space
separating the option and the argument character.

If you choose to redefine the escape character, make sure you
remember which character you have chosen, especially when nest­
ing your rlogins. The escape sequence "XCONTROL-Z" re­
turns you to the first shell that invoked an rlogin with "X" as
the escape character. "XXCON1ROL-Z" returns you to the
second. So, if you rlogin from A to B using "X," rlogin
from B to C using "Y," and from C to D using "X," you can get
to C by typing' 'XXCONTROL-Z" .

The second form of this command requires some preparation be­
fore it will work. The system administrator must pave the way by
creating a directory, usually /usr/hosts and executing the fol­
lowing command:

In /usr /bin/ remsh rhost

which links the remsh binaries to rhost. This works for both
rlogin and remsh, since the remsh command without a com­
mand argument is the equivalent of the rlogin command.

February, 1990
Revision C

2

rlogin(lN) rlogin(lN)

Note: You must then include /usr/hosts (or the direc­
tory chosen by your system administrator) in the search
path specified in your . login or . profile in order for
the second form of this command to work.

FILES
/usr/bin/rlogin
/usr/hosts/*

SEE ALSO
remsh(lN), stty(l).

BUGS

for rhost version of the command

More terminal characteristics should be propagated.

3 February, 1990
RevisionC

rm(l) rm(l)

NAME
rm, rmdi r - remove files or directories

SYNOPSIS
rm [-f] [-i] [-r]file ...

rmdir dir ...

DESCRIPTION
rm removes the entries for one or more files from a directory. If
an entry was the last link to the file, the file is destroyed. Removal
of a file requires write permission in its directory, but neither read
nor write permission on the file itself.

If a file has no write permission and the standard input is a termi­
nal, its permissions are printed and a line is read from the standard
input. If that line begins with y, the file is deleted, otherwise the
file remains. No questions are asked when the -f flag option is
given or if the standard input is not a terminal. The -f flag option
also prevents all error messages from being printed.

If a designated file is a directory, an error comment is printed un­
less the optional argument - r has been used. In that case, rm re­
cursively deletes the entire contents of the specified directory, and
the directory itself.

If the - i (interactive) flag option is in effect, rm asks whether to
delete each file, and, under - r, whether to examine each directo­
ry.

rmdi r removes entries for the named directories, which must be
empty.

EXAMPLES
rm -rf dirname

will remove the entire contents of the named directory and all sub­
directories, and finally the directory itself, with no questions
asked.

FILES
/bin/rm
/bin/rmdir

SEE ALSO
mkdir(l), unlink(2).

February, 1990
Revision C

1

rm(l) rm(l)

DIAGNOSTICS

2

Generally self-explanatory. It is forbidden to remove the file ..
merely to avoid the antisocial consequences of inadvertently doing
something like:

rm -r .*

February t 1990
RevisionC

rmail(1)

February, 1990
Revision C

See mail(l)

rmail(l)

1

rmdel(l) rmdel(l)

NAME
rmdel - remove a delta from an sees file

SYNOPSIS
rmdel -r SID file . ..

DESCRIPfION
rmdel removes the delta specified by the sees Identification
string (SID) from each named sees file. The delta to be removed
must be the newest (most recent) delta in its branch in the delta
chain of each named sees file. In addition, the SID specified
must not be that of a version being edited for the purpose of mak­
ing a delta (i.e., if ap-file (see get(1)) exists for the named sees
file, the SID specified must not appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that non-SeeS
files (last component of the pathname does not begin with s.)
and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken
to be the name of an sees file to be processed; non-SeeS files
and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are document­
ed in the "sees Reference" in A/UX Programming Languages
and Tools. Volume 2. Simply stated, they are either: (1) if you
make a delta you may remove it; or (2) if you own the file and
directory, you may remove a delta.

EXAMPLES
rmdel -rl.2 s.testl.c

would remove the latest delta version (Le., 1.2) for s. testl. c.

FILES
/usr/bin/rmdel
x.file
z.file

SEE ALSO

1

admin(1), cdc(1), comb(1), del ta(l), get(1), help(1),
prs(l), remdel(1), sact(l), sccsdiff(1), unget(1),
val(l), what(l), sccsfile(4).
"sees Reference" in A/UX Programming Languages and Tools.
Volume 2.

February, 1990
RevisionC

rmdel(l)

DIAGNOSTICS
Use help(l) for explanations.

February, 1990
Revision C

rmdel(l)

2

rmdir(l)

See rm(l)

1

rmdir(l)

February, 1990
RevisionC

roffbib(1) roffbib(l)

NAME
roffbib - run off bibliographic database

SYNOPSIS
roffbib [-e] [-h] [-n] [-0] [-r] [-s] [-Tterm] [-x] [­
m mac] [-v] [-Q] [file . ..]

DESCRIPTION
roffbib prints out all records in a bibliographic database, in bi­
bliography format rather than as footnotes or endnotes. Generally
it is used in conjunction with so rtbib:

sortbib database I roffbib

roffbib accepts most of the flag options understood by
nroff(l); most importantly, -T which specifies terminal type.

If abstracts or comments are entered following the %X field key,
roffbib will format them into paragraphs for an annotated bi­
bliography. Several %X fields may be given if several annotation
paragraphs are desired. The -x flag option will suppress the
printing of these abstracts.

A user-defined set of macros may be specified after the -m flag
option. There should be a space between the -m and the macro
filename. This set of macros will replace the ones defined in
/usr/lib/tmac/tmac.bib. The -v flag option will send
output to the Versatec printer/plotter; the -Q flag option will
queue output for the phototypesetter.

Four command-line registers control formatting style of the bi­
bliography, much like the number registers of ms(S). The
command-line argument -rNl will number the references starting
at one (1). The flag -rV2 will double space the bibliography,
while - rVl will double space references but single space annota­
tion paragraphs. The line length can be changed from the default
6.5 inches to 6 inches with the -rL6i argument, and the page
offset can be set from the default of 0 to one inch by specifying
-rOli (capital 0, not zero).

FILES

Note: with the -v and -Q flags, the default page offset is
already one inch.

/usr/ucb/roffbib
/usr/lib/tmac/tmac.bib

February, 1990
Revision C

1

roffbib(l) roffbib(l)

SEE ALSO
addbib(l), indxbib(l), lookbib(l), nroff(l), refer(l),
sortbib(I).

BUGS
Users have to rewrite macros to create customized formats.

2 February, 1990
Revision C

rSh(l) rsh(l)

See sh(l)

February, 1990 1
Revision C

rup(lN) rup(lN)

NAME
rup - show status of machines on local network (RPC version)

SYNOPSIS
rup [-h] [-1] [-t] [host ...]

DESCRIPTION
rup gives a status similar to uptime for remote machines; it
broadcasts on the local network, and displays the responses it re­
ceives.

Normally, the listing is in the order that responses are received,
but this order can be changed by specifying one of the options list­
ed below.

When host arguments are given, rather than broadcasting, rup
will only query the list of specified hosts.

A remote host will only respond if it is running the rstatd dae­
mon, which is normally started up from inetd(1M).

FLAG OPTIONS
-h sort the display alphabetically by host name.

-1 sort the display by load average

-t sort the display by up time.

FILES
/usr/bin/rup
fete/servers

SEE ALSO
inetd(IM), rstatd(IM), ruptime(IN).

BUGS
Broadcasting does not work through gateways.

1 February, 1990
Revision C

ruptime(IN) ruptime(IN)

NAME
ruptime - show host status of local machines

SYNOPSIS
ruptime [-a] [-1] [-t] [-u]

DESCRIPTION
ruptime gives a status line like uptime for each machine on
some local network; these are formed from packets broadcast by
each host on the network once a minute.

Machines for which no status report has been received for 5
minutes are shown as being down.

Users idle an hour or more are not counted unless the -a flag is
given.

Normally, the listing is sorted by host name. The -1, -t, and-u
flags specify sorting by load average, uptime, and number of
users, respectively.

FILES
/usr/bin/ruptime
/usr/spoo1/rwho/whod.*

SEE ALSO
rwho(1N), uptime(I).

February, 1990
Revision C

1

rusers(lN) rusers(lN)

NAME
rusers - give login list for local machines (RPC version)

SYNOPSIS
rusers [-a] [-h] [-i] [-1] [-u] [host . ..]

DESCRIPTION
The rusers command produces output similar to users(l) and
who(1), but for remote machines. It broadcasts on the local net­
work and prints the responses it receives. Normally, the listing is
in the order that responses are received, but this order can be
changed by specifying one of the options listed later. When host
arguments are given, rusers will query only the list of specified
hosts, rather than broadcasting to the entire network.

The default is to print out a listing in the style of users(l) with
one line per machine. When the -1 flag option is given, a
rwho(l) style listing is used. In addition, if a user hasn't typed to
the system for a minute or more, the idle time is reported.

A remote host will respond only ifit is running the rusersd dae­
mon, which is normally started up from inetd.

FLAG OPTIONS
-a Gives a report for a machine even if no users are logged on.

- h Sorts alphabetically by host name.

- i Sorts by idle time.

-1 Gives a longer listing in the style of who(l).

-u Sorts by number of users.

FILES
/usr/ete/rusers
jete/servers

SEE ALSO
rwho(1N), inetd(lM), rusersd(lM), servers(4).

1 February, 1990
Revision C

rwho(lN)

NAME
rwho - who's logged in on local machines?

SYNOPSIS
rwho [-a]

DESCRIPTION

rwho(lN)

The rwho command produces output similar to who, but for all
machines on the local network. If no report has been received
from a machine for 5 minutes then rwho assumes the machine is
down, and does not report users last known to be logged into that
machine.

If a user hasn't typed to the system for a minute or more, then
rwho reports this idle time. If a user hasn't typed to the system
for an hour or more, then the user will be omitted from the output
of rwho unless the -a flag is given.

FILES
/usr/bin/rwho
/usr/spool/rwho/whod.*

SEE ALSO
ruptime(1N), rwhod(lM).

BUGS
This is unwieldy when the number of machines on the local net is
large.

February, 1990
Revision C

1

sact(l) sact(l)

NAME
sact - display who has checked an sees file out for editing.

SYNOPSIS
sactfile ...

DESCRIPTION
sac t informs the user of any impending deltas to a named sees
file. This situation occurs when get(1) with the -e flag option
has been previously executed without a subsequent execution of
del ta(1). If a directory is named on the command line, sact
behaves as though each file in the directory were specified as a
named file, except that non-SeeS files and unreadable files are
silently ignored. If a name of - is given, the standard input is read
with each line being taken as the name of an sees file to be pro­
cessed.

The output for each named file consists of five fields separated by
spaces.

Field 1 specifies the SID of a delta that currently exists in
the sees file to which changes will be made to
make the new delta.

Field 2 specifies the SID for the new delta to be created.

Field 3 contains the logname of the user who will make the
delta (i.e., executed a get for editing).

Field 4 contains the date that get -e was executed.

Field 5 contains the time that get -e was executed.

EXAMPLES

1

If the user has done a get -e, but not a del ta to merge the new
changes, doing a

sact s.test1.c

would show:

1.2 1.3 virginia 82/11/10 16:10:35

indicating that a new version numbered 1.3 is in the process of be­
ing made from version numbered 1.2 by user virginia. The
get -e for the file was done on 82/11/10 at 16: 10:35.

February, 1990
Revision C

sact(l) sact(l)

FILES
/usr/bin/sact

SEE ALSO
admin(I), cdc(I), comb(l), del ta(I), get(l), help(I),
prs(1), rmdel(l), sccs(I), sccsdiff(l), unget(l),
val(l), what(I), sccsfile(4).
"sees Reference" inA/UX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Use help(l) for explanations.

February, 1990 2
Revision C

sag(lG) sag(lG)

NAME
sag - system activity graph

SYNOPSIS
sag [-e time] [-ffile] [-i sec] [-s time] [-T term] [-x spec]
[-y spec]

DESCRIPTION

1

sag graphically displays the system activity data stored in a
binary data file by a previous sa r(1) run. Any of the sa r data
items may be plotted singly. or in combination; as cross plots. or
versus time. Simple arithmetic combinations of data may be
specified. sag invokes sar and finds the desired data by string­
matching the data column header (run sar to see what's avail­
able). These flag options are passed through to sar:

-e time Select data up to time in the form hh [: mm]. where hh
is the time in hours (military time) and mm is the time in
minutes. Default is 18:00.

-f file Use file as the data source for sar. Default is the
current daily data file lusr / adm/ sal sadd.

-i sec Select data at intervals as close as possible to sec
seconds.

-s time Select data later than time. Default is 08:00.

Other flag options:

-Tterm Produce output suitable for terminal term. See
tplot(1G) for known terminals. If term is vpr. out­
put is processed by vp r -p and queued to a Versatec
printer. Default for term is $TERM.

-x spec x axis specification with spec in the form:

name [op name] ... [10 hl1

-y spec y axis specification with spec in the same form as
above.

name is either a string that will match a column header in the sar
report. with an optional device name in square brackets, e.g.,
r+w/s [dsk-l]. or an integer value. op is +. -, *. or I sur­
rounded by blanks. Up to five names may be specified.
Parentheses are not recognized. Contrary to custom, + and - have
precedence over * and I . Evaluation is left to right. Thus

February. 1990
RevisionC

sag(1G) sag(1G)

A / A + B * 100

is evaluated as

(A/(A+B))*100

and

A + B / C + D

is

(A+B)/(C+D)

10 and hi are optional numeric scale limits. If unspecified, they are
deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is
used. Up to 5 spec's separated by ; may be given for -yo En­
close the -x and -y arguments in "" if blanks or \RETURN are
included. The -y default is:

-y " % us r 0 1 a 0 ; % u s r + % sy sOlO 0 ; % u s r +
%sys + %wio 0 100"

EXAMPLES
sag

will show today's CPU utilization.

FILES
/usr/bin/sag
/usr/adm/sa/sadd

SEE ALSO
sar(1), tplot(1G).

February, 1990
Revision C

daily data file for day dd.

2

sar(l) sar(l)

NAME
sar - system activity reporter

SYNOPSIS
sar [-u] [-b] [-y] [-c] [-w] [-a] [-q] [-v] [-m] [-A] [-ofile] t
[n]
sar [-u] [-b] [-y] [-c] [-w] [-a] [-q] [-v] [-m] [-A] [-stime]
[-etime] [-isec] [-ffile]

DESCRIPTION

1

sar, in the first instance, samples cumulative activity counters in
the operating system at n intervals of t seconds. If the -0 flag op­
tion is specified, it saves the samples in file in binary format. The
default value of n is 1. In the second instance, with no sampling
interval specified, sar extracts data from a previously-recorded
file, either the one specified by the -f flag option or, by default,
the standard system activity daily data file lusr I adml sal sadd
for the current day dd. The starting and ending times of the report
can be bounded via the -s and -e time arguments of the form
hh[:mm[:ss]]. The -i option selects records at sec second inter­
vals. Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by one of
the following options:
-u Report CPU utilization (the default):

%usr, %sys, %wio, %idle: portion of time running in
user mode, running in system mode, idle with some process
waiting for block I/O, and otherwise idle.

-b Report buffer activity:
breadl s, bwri tis: transfers per second of data
between system buffers and disk or other block devices.
lread/s,lwrit/s: accesses of system buffers.
% rcache, %wcache: cache hit ratios, for example,
I-bread/lread.
preadl s, pwri tis: transfers via raw (Physical) device
mechanism.

-y Report TIY device activity:
rawchl s, canchl s, outchl s: input character rate, in­
put character rate processed by canon, and output character
rate.
rcvinl s, xmtinl s, mdminl s: receive, transmit and
modem interrupt rates.

February, 1990
RevisionC

sar(l) sar(l)

-c Report system calls.
scall/ s: system calls of all types.
sread/ s, swrit/ s, fork/ s, exec/ s: specific system
calls.
rchar / s, wchar / s: characters transferred by read and
wri te system calls.

-w Report system swapping and switching activity:
swpin/s, swpot/s,bswin/s,bswot/s: bswin/s,
bswot / s: number of transfers and number of 512 byte
units transferred for swapins (including initial loading of
some programs) and swapouts;
pswch/ s: process switches.

-a Report use of file access system routines:
iget/s,narnei/s,dirblk/s.

-q Report average queue length while occupied and percen­
tage of time occupied:
runq-sz, %runocc: run queue of processes in memory
and runnable.
swpq-sz, %swpocc-: swap queue of processes swapped
out but ready to run.

-v Report status of process, inode, file, file record lock and file
record header tables.
proc-sz, inod-sz, file-sz, lock-sz, fhdr-sz:
entries/size for each table, evaluated once at sampling
point;
proc-ov, inod-ov, file-ov: overflows occurring
between sampling points.

-rn Report message and semaphore activities.
rnsg / s, serna/ s: primitives per second.

-A Report all data. Equivalent to -uqbwcayvm.

EXAMPLES
The command

sar

shows today's CPU activity so far. The command

sar -0 temp 60 10

watches CPU activity evolve for 10 minutes and saves data.

FILES
/usr/bin/sar

February, 1990
Revision C

2

sar(l)

lusr/adm/sa/sadd

SEE ALSO
sag(1G), sadc(1M).

sar(l)

daily data file, where dd are digits
representing the day of the month

"System Activity Package" in A/UX Local System Administra­
tion.

3 February, 1990
RevisionC

sees(l) sees(l)

NAME
sees - front end for the sees subsystem

SYNOPSIS
sees [-r] [-dpath] [-ppath] command [flags] [args]

DESCRIPTION
sees is a front end to the sees programs that helps them mesh
more cleanly with the rest of NUX. It also includes the capability
to run set-user-id to another user to provide additional protection.

Basically, sees runs the command with the specified flags and
args. Each argument is normally modified to be prefixed with
SCCS/s .. Thus, you may run get, delta, or info as such a
command.

Flags to be interpreted by the sees program must appear before
the command argument. Flags to be passed to the actual sees
program must come after the command argument. These flags are
specific to the command and are discussed in the documentation
for that command.

Besides the usual sees commands, several pseudo-commands
can be issued. These are:

edit

delget

deledit

ereate

February, 1990
Revision C

Equivalent to get -e.

Perform a delta on the named files and then get
new versions. The new versions will have ID
keywords expanded, and will not be editable.
The -ro, -Po -r. and -y flags will be passed
to delta, and the -b, -e, -e, -i, -k,
-1, -s, and -x flags will be passed to get.

Equivalent to delget, except that the get
phase includes the -e flag. This option is use­
ful for making a checkpoint of your current edit­
ing phase. The same flags will be passed to
del ta as described above, and all the flags list­
ed for get above except -eand-k are passed
to edit.

Create an sees file, taking the initial contents
from the file of the same name. Any flags to
admin are accepted. If the creation is success­
ful, the files are renamed with a comma on the
front. These should be removed when you are
convinced that the sees files have been created

1

sccs(l)

fix

unedit

info

check

tell

diffs

2

sccs(l)

successfully.

Must be followed by a -r flag. This command
essentially removes the named delta, but leaves
you with a copy of the delta with the changes
that were in it. It is useful for fixing small com­
piler bugs, etc. Since it doesn't leave audit
trails, it should be used carefully.

This routine removes everything from the
current directory that can be recreated from
sees files. It will not remove any files being
edited. If the -b flag is given, branches are ig­
nored in the determination of whether they are
being edited; this is dangerous if you are keep­
ing the branches in the same directory.

This is the opposite of an editor a get -e.
It should be used with extreme caution, since
any changes you made since the get will be ir­
retrievably lost.

Give a listing of all files being edited. If the -b
flag is given, branches (Le., SID's with two or
fewer components) are ignored. If the -u flag is
given (with an optional argument) then only files
being edited by you (or the named user) are list­
ed.

Like info, except that nothing is printed if
nothing is being edited, and a nonzero exit status
is returned if anything is being edited. The in­
tent is to have this included in an install en­
try in a makefile to insure that everything is in­
cluded into the sees file before a version is in­
stalled.

Give a newline-separated list of the files being
edited on the standard output. Takes the -b and
-u flags like info and check.

Give a diff listing between the current ver­
sion of the program(s) you have out for editing
and the versions in sees format. The -r, -c,
-i, -x, and -t flags are passed to get; the -1,
-s, -e, -f, -h, and -b options are passed to

February, 1990
Revision C

sees(l) sees(l)

di f f. The -C flag is passed to di f f as -c.

prs This command prints out verbose information
about the named files.

The -r flag runs sees as the real user rather than as whatever ef­
fective user sees has set user ID to. The -d flag gives a root
directory for the SCCS files. The default is the current directory.
The -p flag defines the pathname of the directory in which the
SCCS files will be found; SCCS is the default. The -p flag differs
from the -d flag in that the -d argument is prefixed to the entire
pathname and the -p argument is inserted before the final com­
ponent of the pathname. For example, sees -d /x -py get
alb will convert to get /x/ a/y / s . b. The intent here is to
create aliases such as alias syssees sees -d
/usr / sre which will be used as syssees get
emd/who. e. Also, if the environment variable PROJECT is set,
its value is used to determine the -d flag. If it begins with a
slash, it is taken directly; otherwise, the home directory of a user
of that name is examined for a subdirectory sre or source. If
such a directory is found, it is used.

Certain commands (such as admin) cannot be run set user
id by all users, since this would allow anyone to change the au­
thorizations. These commands are always run as the real user.

EXAMPLES
To get a file for editing, edit it, and produce a new delta:

sees get -e file.e
ex file.e
sees delta file.e

To get a file from another directory:

sees -p/usr/sre/sees/s. get ee.e

or

sees get /usr/sre/sees/s.ee.e

To make a delta of a large number of files in the current directory:

sees delta *.e

To get a list of files being edited that are not on branches:

sees info -b

February, 1990
Revision C

3

secs(l) sees(l)

To delta everything being edited by you:

sees delta 'sees tell -u'

In a make/tie, to get source files from an sees file if it does not
already exist:

SRCS = <list of source files> $ (SRCS) :
sees get $ (REL) $@

FILES
/usr/ueb/sees

SEE ALSO
admin(I), ede(1), eomb(1), del ta(1), get(I), help(I),
prs(I), rmdel(I), saet(I), seesdiff(I), unget(I),
val(1), what(1), seesfile(4).
"sees Reference" in AIUX Programming Languages and Tools,
Volume 2.

BUGS

4

It should be able to take directory arguments on pseudo­
commands like the sees commands do.

February, 1990
RevisionC

sccsdiff(I) sccsdiff(l)

NAME
sccsdiff - compare two versions of an sees file

SYNOPSIS
sccsdiff -rSID1 -rSID2 [-p] [-sn] file . ..

DESCRIPTION
sccsdiff compares two versions of an sees file and generates
the differences between the two versions. Any number of sees
files may be specified, but arguments apply to all files.
sccsdiff first outputs lines resembling the ed(1) commands to
convert file1 into file2. It then outputs the actual lines that differ.

-rSID? SID and SID specify the deltas of an sees file
that are to be compared. Versions are passed to
bdiff(1) in the order given.

-p pipe output for each file through pr(I).

-sn n is the file segment size that bdiff will pass to
diff(l). This is useful when diff fails due to a
high system load.

EXAMPLES
sccsdiff -rl.l -rl.2 s.testl.c

would show the differences between version 1.1 and version 1.2
of the file testl . c.

FILES
/usr/bin/sccsdiff
/trnp/get?????

SEE ALSO
adrnin(l), bdiff(l), cdc(l), comb(1), del ta(l), diff(l),
get(l), help(l), pr(l), sccs(1).
"sees Reference" in theAIUX Programming Languages and
Tools, Volume 2.

DIAGNOSTICS
fik: No differences

If the two versions are the same.

Use help(1) for explanations.

February, 1990
Revision C

1

script(l) script(l)

NAME
script - start a shell that records terminal input and output

SYNOPSIS
script [-a] (file]

DESCRIPTION
script makes a typescript of everything printed on your termi­
nal. The typescript is written to file, or appended to file if the -a
flag option is given. It can be sent to the line printer later with or
lpr(I). If no file name is given, the typescript is saved in the file
typescript.

Note that script uses both standard input and standard output
and that neither may be redirected via a pipe. < or >.
The script ends when the forked shell exits.

This program is useful when using a CRT and a hard-copy record
of the dialog is desired. as for a student handing in a program that
was developed on a crt when hard-copy terminals are in short sup­
ply.

FILES
/usr/bin/script

SEE ALSO
lpr(I).

BUGS

1

script places everything in the log file, meaning everything
typed or appearing on the screen. including control characters. If
v i is invoked, whatever appeared on-screen (including invisible
characters) will be placed in the log file. Control characters useful
for screen output will appear as garbage and will be illegible in a
script. Thus it is a good idea not to use vi while using script.

February. 1990
Revision C

sdb(l) sdb(l)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-w] [-W] [obifil [corfil [directory]]]

DESCRIPTION
sdb is a symbolic debugger which can be used with C and Fortran
programs. It may be used to examine their object files and core
files and to provide a controlled environment for their execution.

objfil is normally an executable program file which has been com­
piled with the -g (debug) flag option; if it has not been compiled
with the -g flag option, or if it is not an executable file, the sym­
bolic capabilities of sdb are limited, but the file can still be exam­
ined and the program debugged. The default for objfil is a. out.
corfil is assumed to be a core image file produced after executing
objfil; the default for corfil is core. The core file need not be
present. A - in place of corfil forces sdb to ignore any core im­
age file. Source files used in constructing obifil must be in direc­
tory to be located.

It is useful to know that at any time there is a current line and
current file. If corfil exists then they are initially set to the line
and file containing the source statement at which the process ter­
minated. Otherwise, they are set to the first line in mainO. The
current line and file may be changed with the source file examina­
tion commands.

By default, warnings are provided if the source files used in pro­
ducing obifil cannot be found, or are newer than objfil. This
checking feature and the accompanying warnings may be disabled
by the use of the -w flag.

Names of variables are written just as they are in C or f77(l).
Variables local to a procedure may be accessed using the form
procedure: variable. If no procedure name is given, the pro­
cedure containing the current line is used by default.

It is also possible to refer to structure members as
variable. member, pointers to structure members as
variable->member, and array elements as variable [number] .
Pointers may be dereferenced by using the fonn pointer [0] .
Combinations of these forms may also be used. f77 common
variables may be referenced by using the name of the common
block instead of the structure name. Blank common variables may

February, 1990
RevisionC

1

sdb(l) sdb(l)

2

be named by the form. variable. A number may be used in place
of a structure variable name, in which case the number is viewed
as the address of the structure, and the template used for the struc­
ture is that of the last structure referenced by sdb. An unqualified
structure variable may also be used with various commands. Gen­
erally, sdb interprets a structure as a set of variables; thus, it
displays the values of all the elements of a structure when it is re­
quested to display a structure. An exception to this interpretation
occurs when displaying variable addresses. An entire structure
does have an address, and it is this value sdb displays, not the ad­
dresses of individual elements.

Elements of a multidimensional array may be referenced as

variable [number] [number] ...

or as

variable [number, number, ...]

In place of number, the form number; number may be used to in­
dicate a range of values, * may be used to indicate all legitimate
values for that subscript, or subscripts may be omitted entirely if
they are the last subscripts and the full range of values is desired.
As with structures, sdb displays all the values of an array or of
the section of an array if trailing subscripts are omitted. It
displays only the address of the array itself or of the section
specified by the user if subscripts are omitted. A multidimension­
al parameter in an f 77 program cannot be displayed as an array,
but it is actually a pointer, whose value is the location of the array.
The array itself can be accessed symbolically from the calling
function.

A particular instance of a variable on the stack may be referenced
by using the form procedure: variable, number. All the variations
mentioned in naming variables may be used. number is the oc­
currence of the specified procedure on the stack, counting the top,
or most current, as the first. If no procedure is specified, the pro­
cedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of
integer constants which are valid in C may be used, so that ad­
dresses may be input in decimal, octal, or hexadecimal.

Line numbers in the source program are referred to as file­
name: number or procedure: number. In either case the number is
relative to the beginning of the file. If no procedure or filename is

February, 1990
RevisionC

sdb(1) sdb(l)

given, the current file is used by default. If no number is given,
the first line of the named procedure or file is used.

While a process is running under sdb all addresses refer to the
executing program; otherwise they refer to objfil or corfil. An ini­
tial argument of -w permits overwriting locations in objfil.

Addresses
The address in a file associated with a written address is deter­
mined by a mapping associated with that file. Each mapping is
represented by two triples (bl, e1, /1) and (b2, e2, fl.). The file
address corresponding to a written address is calculated as fol­
lows:

bI address<el

file address=address+/I-bI
otherwise

b2address<e2

file address=address+j2-b2,

otherwise, the requested address is not legal. In some cases (e.g.,
for programs with separated I and D space) the two segments for a
file may overlap.

The initial setting of both mappings is suitable for normal a. out
and core files. If either file is not of the kind expected then, for
that file, bI is set to 0, el is set to the maximum file size, and/l is
set to 0; in this way the whole file can be examined with no ad­
dress translation.

In order for sdb to be used on large files, all appropriate values
are kept as signed 32-bit integers.

Commands.
The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.

T Print the top line of the stack trace.

variable / elm
Print the value of variable according to length I and format
m. A numeric count c indicates that a region of memory,
beginning at the address implied by variable, is to be
displayed. The length specifiers are:

February, 1990 3
Revision C

sOO(1) sdb(l)

4

b one byte
h two bytes (half word)
1 four bytes (long word)

Legal values for mare:

c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32-bit single precision floating point
g 64-bit double precision floating point
s Assume variable is a string pointer and print char­

acters starting at the address pointed to by the
variable.

a Print characters starting at the variable's address.
This fonnat may not be used with register vari­
ables.

p pointer to procedure
i Disassemble machine-language instruction with

addresses printed numerically and symbolically.
I Disassemble machine-language instruction with

addresses printed numerically only.

The length specifiers are only effective with the formats c,
d, u, 0 and x. Any of the specifiers, c, I, and m, may be
omitted. If all are omitted, sdb chooses a length and a for­
mat suitable for the variable's type, as declared in the pro­
gram. If m is specified, then this format is used for display­
ing the variable. A length specifier determines the output
length of the value to be displayed, sometimes resulting in
truncation. A count specifier c tells sdb to display that
many units of memory, beginning at the address of variable.
The number of bytes in one such unit of memory is deter­
mined by the length specifier I, or, if no length is given, by
the size associated with the variable. If a count specifier is
used for the s or a command, then that many characters are
printed. Otherwise successive characters are printed until
either a null byte is reached or 128 characters are printed.
The last variable may be redisplayed with the command . / .

February, 1990
RevisionC

sdb(l) sdb(1)

The sh(l) metacharacters * and ? may be used within pro­
cedure and variable names, providing a limited form of pat­
tern matching. If no procedure name is given, variables lo­
cal to the current procedure and global variables are
matched; if a procedure name is specified, only variables lo­
cal to that procedure are matched. To match only global
variables, the form : pattern is used.

linenumber? 1m
variable:? 1m

Print the value at the address from a. out or I space given
by linen umber or variable (procedure name), according to
the format 1m. The default format is 'i'.

variable=lm
linenumber=lm
number=lm

Print the address of variable or linenumber, or the value of
number, in the format specified by 1m. If no format is given,
then Ix is used. The last variant of this command provides
a convenient way to convert between decimal, octal and
hexadecimal.

variable! value
Set variable to the given value. The value may be a
number, a character constant or a variable. The value must
be well defined; expressions that produce more than one
value, such as structures, are not allowed. Character con­
stants are denoted' c/uzracter. Numbers are viewed as in­
tegers unless a decimal point or exponent is used. In this
case, they are treated as having the type double. Registers
are viewed as integers. The variable may be an expression
that indicates more than one variable, such as an array or
structure name. If the address of a variable is given, it is re­
garded as the address of a variable of type into C conven­
tions are used in any type conversions necessary to perform
the indicated assignment.

x Print the machine registers and the current machine­
language instruction.

X Print the current machine-language instruction.

February, 1990
Revision C

5

sdb(l) sdb(l)

6

The commands for examining source files are:

e procedure
efile-name
e directory!
e directory file-name

The first two forms set the current file to the file containing
procedure or to file-name. The current line is set to the first
line in the named procedure or file. Source files are as­
sumed to be in directory. The default is the current working
directory. The latter two forms change the value of directo­
ry. If no procedure, filename, or directory is given, the
current procedure name and filename are reported.

/ regular expression /
Search forward from the current line for a line containing a
string matching regular expression as in ed(I). The trailing
/ may be elided.

? regular expression?
Search backward from the current line for a line containing
a string matching regular expression as in ed(l). The trail­
ing ? may be elided.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the
current line to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new
current line.

count+
Advance the current line by count lines. Print the new
current line.

count -
Retreat the current line by count lines. Print the new current
line.

The commands for controlling the execution of the source pro­
gram are:

February, 1990
Revision C

sdb(l) sdb(l)

count r args
count R

Run the program with the given arguments. The r com­
mand with no arguments reuses the previous arguments to
the program while the R command runs the program with no
arguments. An argument beginning with < or > causes
redirection for the standard input or output respectively. If
count is given, it specifies the number of breakpoints to be
ignored.

linen umber c count
linenumber C count

Continue after a breakpoint or interrupt. If count is given, it
specifies the number of breakpoints to be ignored. C contin­
ues with the signal that caused the program to stop reac­
tivated and c ignores it. If a linenumber is specified then a
temporary breakpoint is placed at the line and execution is
continued. The breakpoint is deleted when the command
finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the
given line. If count is given, it specifies the number of
breakpoints to be ignored.

s count
S count

i

Single step the program through count lines. If no count is
given then the program is run for one line. S is equivalent
to s except it steps through procedure calls.

I Single step by one machine-language instruction. I steps
with the signal that caused the program to stop reactivated
and i ignores it.

variable$m count
address:m count

Single step (as with s) until the specified location is
modified with a new value. If count is omitted, it is effec­
tively infinity. variable must be accessible from the current
procedure. Since this command is done by software, it can
be very slow.

level v
Toggle verbose mode, for use when single stepping with S,

February, 1990
Revision C

7

sdb(1) sdb(1)

8

s, or m. If level is omitted, then just the current source file
and/or subroutine name is printed when either changes. If
level is 1 or greater, each C source line is printed before it is
executed; if level is 2 or greater, each assembler statement is
also printed. A v turns verbose mode off if it is on for any
level.

k Kill the program being debugged.

procedure (argl , arg2, ...)
procedure (argl , arg2, .. .)/m

Execute the named procedure with the given arguments.
Arguments can be integer, character or string constants or
names of variables accessible from the current procedure.
The second form causes the value returned by the procedure
to be printed according to format m. If no format is given, it
defaults to d.

linenumber b commands
Set a breakpoint at the given line. If a procedure name
without a line number is given (e.g., proc :), a breakpoint
is placed at the first line in the procedure even if it was not
compiled with the -g flag option. If no linenumber is given,
a breakpoint is placed at the current line. If no commands
are given, execution stops just before the breakpoint and
control is returned to sdb. Otherwise the commands are
executed when the breakpoint is encountered and execution
continues. Multiple commands are specified by separating
them with semicolons. If k is used as a command to exe­
cute at a breakpoint, control returns to sdb, instead of con­
tinuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no line number is
given, the breakpoints are deleted interactively. Each
breakpoint location is printed and a line is read from the
standard input. If the line begins with a y or d, the break­
point is deleted.

D Delete all breakpoints.

1 Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc: number, the

February, 1990
RevisionC

sdb(l) sdb(l)

command effectively does a linenumber bl. If line number
is of the form proc : , the command effectively does a proc :
b T.

Miscellaneous commands:

!command
The command is interpreted by sh(1).

newline
If the previous command printed a source line, advance the
current line by one line and print the new current line. If the
previous command displayed a memory location, display
the next memory location.

CONTROL-D
Scroll. Print the next 10 lines of instructions, source, or
data, depending on which was printed last.

<filename
Read commands from filename until the end of file is
reached, then continue to accept commands from standard
input. When sdb is told to display a variable by a com­
mand in such a file, the variable name is displayed along
with the value. This command may not be nested; < may
not appear as a command in a file.

M Print the address maps.

M[/] [*] b ef
Record new values for the address map. The arguments ?
and I specify the text and data maps, respectively. The first
segment, (hi, el, 11), is changed unless * is specified, in
which case the second segment, (b2, e2, 12), of the mapping
is changed. If fewer than three values are given, the
remaining map parameters are left unchanged.

n string
Print the given string. The C escape sequences of the form
are recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for de­
bugging the debugger:

v Print the version number.
Q Print a list of procedures and files being debugged.

February, 1990 9
Revision C

sdb(l) sdb(l)

Y Toggle debug output.

FILES
/usr/bin/sdb
a.out
core

SEE ALSO
adb(I), cc(l), ctrace(I), f77(1), sh(1), a. out(4), core(4).
"sdb Reference" in AIUX Programming Languages and Tools,
Volume 1.

WARNINGS
Data stored in text sections are indistinguishable from functions.

Line number infonnation in optimized functions is unreliable, and
some information may be missing.

BUGS

10

If a procedure is called when the program is not stopped at a
breakpoint (such as when a core image is being debugged), all
variables are initialized before the procedure is started. This
makes it impossible to use a procedure which formats data from a
core image.

The default type for printing f77 parameters is incorrect. Their
address is printed instead of their value.

Tracebacks containing f77 subprograms with multiple entry
points may print too many arguments in the wrong order, but their
values are correct.

The range of an f 77 array subscript is assumed to be 1 to n,
where n is the dimension corresponding to that subscript. This is
only significant when the user omits a subscript, or uses * to indi­
cate the full range. There is no problem in general with arrays
having subscripts whose lower bounds are not 1.

February, 1990
RevisionC

sdiff(1) sdiff(1)

NAME
sdi f f - side-by-side difference program

SYNOPSIS
sdiff [-1] [-0 output] [-5] [-w n]filel file2

DESCRIPTION
sdiff uses the output of diff(l) to produce a side-by-side list­
ing of two files indicating those lines that are different Each line
of the two files is printed with a blank gutter between them if the
lines are identical, a < in the gutter if the line only exists in filel , a
> in the gutter if the line only exists infile2, and a I for lines that
are different

The following flag options exist:

-w n Use the next argument, n, as the width of the output
line. The default line length is 130 characters. The
width must be between 20 and 200.

-1 Only print the left side of any lines that are identical.

-s Do not print identical lines.

-0 output Use the next argument, output, as the name of a third

February, 1990
Revision C

file that is created as a user controlled merging of filel
andfile2. Identical lines offilel andfile2 are copied to
output. Sets of differences, as produced by diff(1),
are printed; where a set of differences share a com­
mon gutter character. Mter printing each set of differ­
ences, sdiff prompts the user with a % and waits for
one of the following user-typed commands:

1 append the left column to the output file
r append the right column to the output file
5 turn on silent mode; do not print identical

lines
v turn off silent mode
e 1 call the editor with the left column
e r call the editor with the right column
e b call the editor with the concatenation of left

and right
e call the editor with a zero length file
q exit from the program

On exit from the editor, the resulting file is con­
catenated on the end of the output file.

1

sdiff(l)

EXAMPLES
If f i 1 e 1 contains:

x
a
b
c
d

and f i 1 e 2 contains:

y
a
d
c

then

sdiff filel file2

would print:

x
a
b
c
d

<
<

y
a

d
> C

FILES
/usr/bin/sdiff

SEE ALSO
bdiff(l), diff(1), ed(1), sccsdiff(l).

2

sdiff(l)

February, 1990
Revision C

sed(l) sed(l)

NAME
sed - stream editor

SYNOPSIS
sed [-n] -e command-line-script [file ...]

sed [-n] -f sfile [file .. .]

DESCRIPTION
sed copies the named files (standard input default) to the standard
output, edited according to a script of sed commands. The -f
flag option causes the script to be taken from file sfile. The -e
flag option causes the script to be taken directly from the com­
mand line. These flag options accumulate, so many scripts can be
used in one invocation of the command. If there is just one -e
flag option and no -f flag options, the -e flag may be omitted.
Note that all shell metacharacters must be quoted when a com­
mand line script is supplied, so care must be taken when using the
-e flag option.

The -n flag option suppresses the default output: output will only
be generated if explicitly asked for by certain sed commands (p,
P, i, r, and the p option of the s command).

A script consists of editing commands, one per line, of the follow­
ing form:

[address [,address]]func tion

In normal operation, sed cyclically copies a line of input into a
. pattern space (unless there is something left after a D command),

applies in sequence all commands whose addresses select that pat­
tern space, and at the end of the script copies the pattern space to
the standard output (except under -n) and deletes the pattern
space.

Some of the commands use a hold space to save all or part of the
pattern space for subsequent retrieval.

An address is either a decimal number that counts input lines cu­
mulatively across files, a $ that addresses the last line of input, or
a context address, i.e., a/regular expression/ in the style of
ed(l) modified as follows:

In a context address, the construction
\ ?regular expression?, where? is any character, is identi­
cal to /regular expression/. Note that in the context address
\xabc \xdefx, the second x stands for itself, so that the

February, 1990 1
Revision C

sed(1) sed(l)

2

regular expression is abcxde f.

The escape sequence \n matches a newline embedded in the
pattern space.

A period (.) matches any character except the terminal
newline of the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that
matches the address.

A command line with two addresses selects the inclusive range
from the first pattern space that matches the first address through
the next pattern space that matches the second. (If the second ad­
dress is a number less than or equal to the line number first select­
ed, only one line is selected.) Thereafter the process is repeated,
looking again for the first address.

Editing commands can be applied only to nonselected pattern
spaces by use of the negation function (!) (see below).

In the following list of functions the maximum number of permis­
sible addresses for each function is indicated in parentheses.

The text argument used in some of the commands consists of one
or more lines, all but the last of which end with a backslash (\) to
hide the newline. Backslashes in such text are treated like
backslashes in the replacement string of an s command, and may
be used to protect initial blanks and tabs against the stripping that
is done on every script line.

An rfile or wfile argument in a command must terminate the com­
mand line and must be preceded by exactly one blank. Each wfile
is created before processing begins. There can be at most 10 dis­
tinct wfile arguments.

(l)a \

text Append. Place text on the output before reading the
next input line.

(2)b label Branch to the : command bearing the label. If label
is empty, branch to the end of the script.

(2)c\
text Change. Delete the pattern space. With 0 or 1 ad­

dress or at the end of a 2-address range, place text on
the output. Start the next cycle.

February, 1990
RevisionC

sed(1)

(2)d

(2)D

(2)g

(2)G

(2)h

(2)H

(l)i \

sed(1)

Delete the pattern space. Start the next cycle.

Delete the initial segment of the pattern space through
the first newline. Start the next cycle.

Replace the contents of the pattern space by the con­
tents of the hold space.

Append the contents of the hold space to the pattern
space.

Replace the contents of the hold space by the contents
of the pattern space.

Append the contents of the pattern space to the hold
space.

text Insert. Place text on the standard output.

(2) 1 List the pattern space on the standard output in an
unambiguous form. Non-printing characters are
spelled in two-digit ASCII and long lines are folded.

(2)n Copy the pattern space to the standard output. Re­
place the pattern space with the next line of input.

(2)N Append the next line of input to the pattern space
with an embedded newline. (The current line number
changes.)

(2)p Print. Copy the pattern space to the standard output.

(2)p Copy the initial segment of the pattern space through
the first newline to the standard output.

(l)q Quit. Branch to the end of the script. Do not start a
new cycle.

(l)r rfile Read the contents of rfile. Place them on the output
before reading the next input line.

(2) s Iregular expressionlreplacementlJlags

February, 1990
RevisionC

Substitute the replacement string for instances of the
regular expression in the pattern space. Any charac­
ter may be used instead of /. For a more complete
description, see ed(1). flags is zero or more of:

n n= 1 - 512. Substitute for just the nth oc­
currence of the regular expression.

3

sed(l) sed(l)

4

g

p

Global. Substitute for all nonoverlapping
instances of the regular expression rather
than just the first one.

Print the pattern space if a replacement
was made.

w wfile Write. Append the pattern space to wfile
if a replacement was made.

(2)t label Test. Branch to the : command bearing the label if
any substitutions have been made since the most re­
cent reading of an input line or execution of at. If
label is empty, branch to the end of the script.

(2)w wfile Write. Append the pattern space to wfile.

(2)x Exchange the contents of the pattern and hold spaces.

(2) y /stringl/string2/
Transform. Replace all occurrences of characters in
stringl with the corresponding character in string2.
The lengths of stringl and string2 must be equal.

(2) ! Junction
Apply thefunction (or group, if Junction is {) only to
lines not selected by the address(es).

(0): label This command does nothing; it bears a label for b and
t commands to branch to.

(1)= Place the current line number on the standard output
as a line.

(2){

(0)

(0)*

Execute the following commands through a matching
} only when the pattern space is selected.

An empty command is ignored.

If a * appears as the first character on the first line of
a script file, then that entire line is treated as a com­
ment, with one exception. If the character after the *
is an "n", then the default output will be suppressed,
as if the -n flag option had been invoked. The rest of
the line after #n is also ignored. It is an error for the
command to be used on any line byt the first line of
the file. A script file must contain at least one non­
comment line.

February, 1990
RevisionC

sed(I) sed(l)

EXAMPLES
The following command will process inputfile according to
the sedfile script, and place the results in filea:

sed -f sedfile inputfile > filea

The sedfile script

4 a\
xxxxxxxxxxxxx

would insert a row of Xs after line 4.

FILES
/bin/sed

SEE ALSO
aWk(I), ed(l), grep(l), lex(I).

WARNINGS
Operations based on a deleted line are lost. For example, if you
insert text before line 4 and then delete line 4, the inserted text is
lost. Reads at line 0 are actually reads before line 1, so deleting
line 1 erases these reads. Writes are lost as well, although the
filename is created.

February, 1990 5
Revision C

sette(l) sette(l)

NAME
sette - set the type and creator of a Macintosh resource file

SYNOPSIS
set te type creator [file] ...

DESCRIYfION

1

sette sets the file type and creator of an AppleSingle file or the
header file of an AppleDouble pair. See Inside Macintosh,
Volume III, for a description of file types and creators.

The type and creator parameters are the actual strings used by a
Macintosh application to identify itself and the files it creates. If
the type or creator code includes spaces, tabs, or metacharacters,
enclose the code in quotation marks.

The file parameter represents the name of the file to be changed.
If you are working with a pair of AppleDouble files, specify the
name of the data file only, not the name of the header file. set t e
automatically looks for the associated header file, which should
have the same name as the data file, but with a percent sign (%)
prefixed. If set te cannot find the header file, it creates one.

Most Macintosh applications open a document file only if they
recognize the type and creator. In the Macintosh as, a file's type
and creator are stored in the directory. In A/UX, the type and
creator are stored as an entry in either an AppleSingle file or the
header file of an AppleDouble pair. When an NUX Toolbox ap­
plication creates a file using the normal File Manager routines, it
automatically creates the an AppleSingle file with the appropriate
type and creator (see the description of the File Manager in
Chapter 4 of Inside Macintosh).

sette is useful in two situations.

1. When a file's type and creator are lost during a file transfer
from the Macintosh environment to NUX.

2. When you want to use a data file that was created by the stan­
dard NUX file system instead of the NUX Toolbox File
Manager.

The usual symptom of an incorrect type is the file's failure to ap­
pear in the Open Standard File dialog box.

February, 1990
Revision C

sette(1) sette(l)

EXAMPLES
The command

sette PNTG MPNT report house

establishes the type of the data files report and house as PNTG
and the creator as MPNT.

FILES
/mae/bin/sette

SEE ALSO
derez(1), rez(1).

February, 1990
Revision C

2

sh(l) sh(1)

NAME
sht rsh - run the Bourne shellt the earliest of the command
interpreters available

SYNOPSIS
sh [-a] [-c] [-e] [-f] [-h] [-i] [-k] [-n] [-r] [-s] [-t] [-u]
[-v] [-x] [args]

rsh [-a] [-c] [-e] [-f] [-h] [-i] [-k] [-n] [-r] [-s] [-t] [-u]
[-v] [-x] [args]

DESCRIPTION

1

sh is a command programming language that executes commands
read from a terminal or a file. rsh is a restricted version of the
standard command interpreter sh; it is used to set up login names
and execution environments whose capabilities are more con­
trolled than those of the standard shell. See "Invocationtt below
for the meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letterst di­
gitst or underscores beginning with a letter or underscore. A
parameter is a namet a digitt or any of the characters: * t @t =1f t ? t
-t $t and !.

Commands
A simple-command is a sequence of nonblank words separated by
blanks. The first word specifies the name of the command to be
executed. Except as specified below t the remaining words are
passed as arguments to the invoked command. The command
name is passed as argument 0 (see exec(2». The value of a
simple-command is its exit status if it terminates normally t or (oc­
tal) 200+status if it terminates abnormally (see signal(3) for a
list of status values).

A pipeline is a sequence of one or more commands separated by
" I tt (ort for historical compatibilitYt by"'). The standard output
of each command but the last is connected by a pipe(2) to the
standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to ter­
minate. The exit status of a pipeline is the exit status of the last
command.

A list is a sequence of one or more pipelines separated by ; t & t
& & t or I I t and optionally terminated by ; or &. Of these four
symbolst ; and & have equal precedencet which is lower than that

February t 1990
RevisionC

sh(l) sh(1)

of && and 1 I. The symbols && and 1 1 also have equal pre­
cedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execu­
tion of the preceding pipeline (i.e., the shell does not wait for that
pipeline to finish). The symbol & & (I I) causes the list following
it to be executed only if the preceding pipeline returns a zero
(nonzero) exit status. An arbitrary number of newlines may ap­
pear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that
of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the
next word taken from the in word list. If in word ... is
omitted, then the for command executes the do list once for
each positional parameter that is set (see "Parameter Substi­
tution," below). Execution ends when there are no more
words in the list.

case word in [pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first
pattern that matches word. The form of the patterns is the
same as that used for file-name generation (see "Filename
Generation' ') except that a slash, a leading dot, or a dot im­
mediately following a slash need not be matched explicitly.

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit
status, the list following the first then is executed. Other­
wise, the list following elif is executed and, if its value is
zero, the list following the next then is executed. Failing
that, the else list is executed. If no else list or then list
is executed, then the if command returns a zero exit status.

while list do list done

(list)

A while command repeatedly executes the while list and,
if the exit status of the last command in the list is zero, exe­
cutes the do list; otherwise the loop terminates. If no com­
mands in the do list are executed, then the w hi 1 e command
returns a zero exit status; un til may be used in place of
while to negate the loop termination test.

Execute list in a subshell.

February, 1990
Revision C

2

sh(l) sh(l)

3

{ list}
list is simply executed.

name () {list}
Define a function which is referenced by name. The body of
the function is the list of commands between { and }. Exe­
cution of functions is described below (see "Execution,"
below).

The following words are recognized only as the first word of a
command and when not quoted:

if then else elif
for while until do

Comments

fi case
done

esac
}

A word beginning with 41= causes that word and all the following
characters up to a newline to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave
accents (' ') may be used as part or all of a word; trailing new­
lines are removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters.
There are two types of parameters, positional and keyword. If
parameter is a digit, it is a positional parameter. Positional
parameters may be assigned values by set. Keyword parameters
(also known as variables) may be assigned values by writing:

name=value [name=value] ...

Pattern-matching is not performed on value. There cannot be a
function and a variable with the same name.

$ {parameter}
The value, if any, of the parameter is substituted. The braces
are required only when parameter is followed by a letter, di­
git, or underscore that is not to be interpreted as part of its
name. If parameter is * or @, all the positional parameters,
starting with $1, are substituted (separated by spaces).
Parameter $ 0 is set from argument zero when the shell is in­
voked.

$ {parameter : -word}
If parameter is set and is non-null, substitute its value; other­
wise substitute word.

February, 1990
RevisionC

sh(1) sh(1)

$ {parameter : =word}
If parameter is not set or is null, set it to word; the value of
the parameter is substituted. Positional parameters may not
be assigned to in this way.

$ {parameter: ?word}
If parameter is set and is non-null, substitute its value; other­
wise, print word and exit from the shell. If word is omitted,
the message "parameter null or not set" is
printed.

$ {parameter: +word}
If parameter is set and is non-null, substitute word; other­
wise substitute nothing.

In the above, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is exe­
cuted only if d is not set or is null:

echo ${d:- 'pwd'}

If the colon (:) is omitted from the above expressions, the shell
checks only whether parameter is set or not.

The following parameters are set automatically by the shell:

-# The number of positional parameters in de­
cimal.
Flags supplied to the shell on invocation or by
the set command.

? The decimal value returned by the last
synchronously-executed command.

$ The process number of this shell.
The process number of the last background
command invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for
the cd command.

PATH The search path for commands (see "Exe­
cution," below). You may not change
PATH if executing under rsh.

CDPATH The search path for the cd command.

MAIL If you have set this parameter to the name
of a mail file and you have not set the
MAILPATH parameter, the shell informs

February, 1990 4
Revision C

sh(l) sh(l)

5

you of the arrival of mail in the specified
file.

MAl LCHECK This parameter specifies how often (in
seconds) the shell will check for the arrival
of mail in the files specified by the MAIL­
PATH or MAIL parameters. The default
value is 600 seconds (10 minutes). If this
parameter is set to 0, the shell will check
before each prompt.

MAl LP A T H A colon-separated (:) list of filenames. If
this parameter is set, the shell informs the
user of the arrival of mail in any of the
specified files. Each filename may be fol­
lowed by % and a message that will be
printed when the modification time
changes. The default message is "You
have mail."

PSI Primary prompt string, by default" $" .

P S 2 Secondary prompt string, by default" >" .
IF S Internal field separators, normally space,

tab, and newline.

SHACCT If this parameter is set to the name of a file
writable by the user, the shell will write an
accounting record in the file for each shell
procedure executed. Accounting routines
such as acctcom(l) and acctcms(IM)
can be used to analyze the data collected.

SHELL When the shell is invoked, it scans the en­
vironment (see "Environment," below) for
this name. If it is found and there is an r in
the filename part of its value, the shell be­
comes a restricted shell.

The shell gives default values to PATH, PSI, PS2, MAILCHECK,
and IFS. HOME and MAIL are set by login(I».

Blank Interpretation
Mter parameter and command substitution, the results of substitu­
tion are scanned for internal field separator characters (those
found in IFS) and split into distinct arguments where such charac­
ters are found. Explicit null arguments (" "or ") are retained.

February, 1990
Revision C

sh(l) sh(l)

Implicit null arguments (those resulting from parameters that have
no values) are removed.

Filename Generation
Following substitution, each command word is scanned for the
characters *, ?, and [. If one of these characters appears, the
word is regarded as a pattern. The word is replaced with
alphabetically-sorted filenames that match the pattern. If no
filename is found that matches the pattern, the word is left un­
changed. The character . at the start of a filename or immediately
following a /, as well as the character / itself, must be matched
explicitly.

* Matches any string, including the null string.

? Matches any single character.

[...] Matches anyone of the enclosed characters. A pair
of characters separated by - matches any character
lexically between the pair, inclusive. If the first
character following the opening " [" is a " ! ", any
character not enclosed is matched.

Quoting
The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

; & () I ~ < > newline space tab

A character may be qUfJted (Le., made to stand for itself) by
preceding it with a \. The pair \newline is ignored. All characters
enclosed between a pair of single quote marks (, '), except a sin­
gle quote, are quoted. Inside double quote marks (n n), parameter
and command substitution occurs and \ quotes the characters \,
" , and $. $* is equivalent to $1 $2 ... , whereas $@ is
equivalent to $1 2 ...

Prompting
When used interactively, the shell prompts with the value of PSI
before reading a command. If, at any time, a newline is typed and
further input is needed to complete a command, the secondary
prompt (i.e., the value ofpS2) is issued.

Input/Output
Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple-command or may
precede or follow a command and are not passed on to the in-

February, 1990 6
Revision C

sh(l) sh(l)

7

voked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1).

If the file does not exist, it is created; otherwise, it
is truncated to zero length.

> >word Use file word as standard output. If the file exists,
output is appended to it (by first seeking to the
end-of-file); otherwise, the file is created.

< < [-] word The shell input is read up to a line that is the same
as word, or to an end-of-file. The resulting docu­
ment becomes the standard input. If any character
of word is quoted, no interpretation is placed upon
the characters of the document; otherwise, parame­
ter and command substitution occurs, (unescaped)
\newline is ignored, and \ must be used to quote
the characters \, $, ',and the first character of
word. If - is appended to < <, all leading tabs are
stripped from word and from the document.

< & digit Use the file associated with file descriptor digit as
standard input. Similarly for the standard output
using >&digit.

<&- The standard input is closed. Similarly for the stan-
dard output using >&-.

If any of the above is preceded by a digit, the file descriptor which
will be associated with the file is that specified by the digit (in­
stead of the default 0 or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with
file descriptor 1.

The order in which redirections are specified is significant. The
shell evaluates redirections left-to-right. For example:

... l>xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file
descriptor 2 with the file associated with file descriptor 1 (Le.,
xxx). If the order of redirections were reversed, file descriptor 2
would be associated with the terminal (assuming file descriptor 1
had been) and file descriptor 1 would be associated with file xxx.

February, 1990
Revision C

sh(1) sh(l)

If a command is followed by &, the default standard input for the
command is the empty file /dev/null. Otherwise, the environ­
ment for the execution of a command contains the file descriptors
of the invoking shell, as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment
The environment (see environ(5)) is a list of name-value pairs
that is passed to an executed program in the same way as a normal
argument list. The shell interacts with the environment in several
ways. On invocation, the shell scans the environment and creates
a parameter for each name found, giving it the corresponding
value. If the user modifies the values of any of these parameters
or creates new parameters, none of these affects the environment
unless the export command is used to bind the shell's parameter
to the environment (see also set -a). A parameter may be re­
moved from the environment with the unset command. The en­
vironment seen by any executed command is thus composed of
any unmodified name-value pairs originally inherited by the shell,
minus any pairs removed by unset, plus any modifications or ad­
ditions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

TERM=450cmd

and

(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the en­
vironment, even if they occur after the command name. The fol­
lowing command first prints a=b c and then, after the -k flag is
set, prints only c:

echo a=b c
set -k
echo a=b c

Signals

#first time prints a=b c
#puts all keyword args in env
#now prints only c; a=b goes to env

The interrupt and quit signals for an invoked command are ig­
nored if the command is followed by &; otherwise signals have the
values inherited by the shell from its parent, with the exception of
signal 11 (but see also the t rap command below).

February, 1990
Revision C

8

sh(l} sh(1}

9

Execution
Each time a command is executed, the above substitutions are car­
ried out. If a command name matches one of the special com­
mands listed below (see HSpecial Commands"), it is executed in
the shell process. If the command name does not match a special
command, but matches the name of a defined function, the func­
tion is executed in the shell process (note that this differs from the
execution of shell procedures, which takes place in subshells).
The positional parameters $1, $2, ... are set to the arguments of
the function. If the command name matches neither a special
command nor the name of a defined function, a new process is
created and an attempt is made to execute the command via
exec(2}.

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separat­
ed by a colon (:). The default path is : /bin: /usr/bin (speci­
fying the current directory, /bin, and /usr/bin, in that order).
Note that the current directory is specified by a null pathname,
which can appear immediately after the equals sign or between the
colon delimiters anywhere else in the path list. If the command
name contains a / the search path is not used; such commands
will not be executed by the restricted shell. Otherwise, each direc­
tory in the path is searched for an executable file. If the file has
execute permission but is not an a. out file, it is assumed to be a
file containing shell commands. A subshell is spawned to read it.
A parenthesized command is also executed in a subshell.

The location in the search path where a command was found is
remembered by the shell (to help avoid unnecessary execs later).
If the command was found in a relative directory, its location must
be redetermined whenever the current directory changes. The
shell forgets all remembered locations whenever the PATH vari­
able is changed or the hash -r command is executed (see
below).

Special Commands
Input/output redirection is now permitted for these commands.
File descriptor 1 is the default output location.

No effect; the command does nothing. A zero exit code is re­
turned .

. file
Read and execute commands from file and return. The

February, 1990
RevisionC

sh(l) sh(l)

search path specified by PATH is used to find the directory
containing file.

break [n]
Exit from the enclosing for or while loop, if any. If n is
specified, break n levels.

cd [arg]
Change the current directory to arg. The shell parameter
HOME is the default arg. The shell parameter CDPATH
defines the search path for the directory containing arg. Al­
ternative directory names are separated by a colon (:). The
default path is null (Le., the empty string, specifying the
current directory). Note that the current directory is specified
by a null pathname, which can appear immediately after the
equals sign or between the colon delimiters anywhere else in
the path list. If arg begins with a /, the search path is not
used. Otherwise, each directory in the path is searched for
argo The cd command may not be executed by rsh.

continue [n]
Resume the next iteration of the enclosing for or while
loop. If n is specified, resume at the n-th enclosing loop.

echo [arg ... J
Echo arguments. Arguments are written separated by blanks
and terminated by a newline on the standard output. It under­
stands C-like escape conventions.

eval [arg ... J
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in
place of this shell without creating a new process.
Input/output arguments may appear and, if no other argu­
ments are given, cause the shell input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n
is omitted, the exit status is that of the last command execut­
ed (an end-of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the en­
vironment of subsequently-executed commands. If no argu-

February, 1990
Revision C

10

Sh(l) sh(l)

11

ments are given, a list of all names that are exported in this
shell is printed. Function names may not be exported.

hash[-r] [name ...]
For each name, the location in the search path of the com­
mand specified by name is determined and remembered by
the shell. The - r flag option causes the shell to forget all
remembered locations. If no arguments are given, informa­
tion (hits and cost) about remembered commands is present­
ed. hits is the number of times a command has been invoked
by the shell process. cost is a measure of the work required
to locate a command in the search path. There are certain si­
tuations which require that the stored location of a command
be recalculated. Commands for which this will be done are
indicated by an asterisk (*) adjacent to the hits information.
cost will be incremented when the recalculation is done.

newgrp [arg ...]

pwd

Equivalent to exec newgrp arg ... Changes a user's
group identification. The user remains logged in, and the
current directory is unchanged, but calculations of access
permissions to files are performed with respect to the new
real and effective group IDs. The user is always given a new
shell, replacing the current shell, by newgrp, regardless of
whether it terminated successfully or due to an error condi­
tion (i.e., unknown group).

With no arguments, newgrp changes the group
identification back to the group specified in the user's pass­
word file entry.

If the first argument to newgrp is a -, the environment is
changed to what would be expected if the user actually
logged in again.

This built-in version executes faster than the NUX command
newgrp(l) but is otherwise identical.

Print the current working directory. This built-in version ex­
ecutes faster than the NUX command pwd(1) but is other­
wise identical.

read [name . ..]
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second

February, 1990
Revision C

sh(l) sh(l)

name, etc., with leftover words assigned to the last name.
The return code is 0 unless an end-of-file is encountered.

readonly [name . ..]
The given names are marked readonly and the values of the
these names may not be changed by subsequent assignment.
If no arguments are given, a list of all readonly names is
printed.

return [n]
Causes a function to exit with the return value specified by n.
If n is omitted, the return status is that of the last command
executed.

set [--aefhkntuvx [arg .. .]]

-a Mark variables which are modified or created for export.

-e Exit immediately if a command exits with a nonzero exit
status.

-f Disable filename generation.

-h Locate and remember function commands as functions
are defined (function commands are normally located
when the function is executed).

- k All keyword arguments are placed in the environment
for a command, not just those that precede the command
name.

-n Read commands, but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are execut-
ed.

- - Do not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be turned off.
These flags can also be used upon invocation of the shell.
The current set of flags may be found in $-. The remaining
arguments are positional parameters and are assigned, in ord­
er, to $1, $2, ... If no arguments are given, the values of all
names are printed.

February, 1990 12
RevisionC

sh(l) sh(l)

13

shift [n]
The positional parameters from $ n + 1 ... are renamed $1
. . .. If n is not given, it is assumed to be 1.

test
Evaluates the expression expr and, if its value is true, returns
a zero (true) exit status; otherwise, a nonzero (false) exit
status is returned; test also returns a nonzero exit status if
there are no arguments. The superuser is always granted ex­
ecute permission even though (1) execute permission is
meaningful only for directories and regular files, and (2)
exec requires that at least one execute mode bit be set for a
regular file to be executable. The following primitives are
used to construct expr:

-rfile true iffile exists and is readable.

-wfile

-x file

-ffile

-dfile

-c file

-bfile

-pfile

-ufile

-g file

-kfile

-s file

-t [fildes]

-z sl

-nsl

sl =s2

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special
file.

true if file exists and is a block special file.

true iffile exists and is a named pipe (FIFO).

true if file exists and its set user ID bit is set.

true if file exists and its set group ID bit is
set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than
zero.

true if the open file whose file descriptor
number is fildes (1 by default) is associated
with a terminal device.

true if the length of string sl is zero.

true if the length of the string sl is nonzero.

true if strings sl and s2 are identical.

February, 1990
Revision C

sh(1)

sl ! = s2

sl

nl-eqn2

sh(1)

true if strings sl and s2 are not identical.

true if sl is not the null string.

true if the integers nl and n2 are algebraical­
lyequal. Any of the comparisons -ne, -gt,
-ge, -It, and -Ie may be used in place of
-eq.

These primaries may be combined with the
following operators:

unary negation operator.

-a binary AND operator.

-0 binary OR operator (-a has

(expr)

higher precedence than -0).

parentheses for grouping.

Notice that all the operators and
flags are separate arguments to
test. Notice also that
parentheses are meaningful to
the shell and, therefore, must be
escaped.

test is typically used in shell
scripts as in the following exam­
ple, which prints the message
"foo is a directory" if
it is found to be one when test
is run. For example,

if test -d foo
then

echo "foo is a dir"
fi

times
Print the accumulated user and system times for processes
run from the shell.

trap [arg] [n] ...
The command arg is to be read and executed when the shell
receives signal(s) n. (Note that arg is scanned once when the
trap is set and once when the trap is taken.) Trap commands
are executed in order of signal number. Any attempt to set a

February, 1990 14
Revision C

sh(l) sh(l)

15

trap on a signal that was ignored on entry to the current shell
is ineffective. An attempt to trap on signal 11 (memory
fault) produces an error. If arg is absent, all trap(s) n are
reset to their original values. If arg is the null string, this sig­
nal is ignored by the shell and by the commands it invokes.
If n is 0, the command arg is executed on exit from the shell.
The trap command with no arguments prints a list of com­
mands associated with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used
as a command name.

ulimit [-f] [n]
imposes a size limit of n. -f imposes a size limit of n blocks
on files written by child processes (files of any size may be
read). With no argument, the current limit is printed. If no
flag option is given, -f is assumed.

umask[nnn]
The user file-creation mask is set to nnn (see umask(2)). If
nnn is omitted, the current value of the mask is printed.

unset[name ...]
For each name, remove the corresponding variable or func­
tion. The variables PATH, PS1, PS2, MAILCHECK, and IFS
cannot be unset.

wait [n]
Wait for the specified process and report its termination
status. If n is not given, all currently active child processes
are waited for and the return code is zero.

Invocation
If the shell is invoked through exee(2) and the first character of
argument zero is -, commands are read initially from
fete/profile and from $HOME/ .profile, if such files ex­
ist. Thereafter, commands are read as described below, which is
also the case when the shell is invoked as /bin/ sh. The flags
below are interpreted by the shell on invocation only; note that,
unless the -c or -s flag is specified, the first argument is assumed
to be the name of a file containing commands, and the remaining
arguments are passed as positional parameters to that command
file:

February, 1990
Revision C

sh(l)

-c string

-s

-i

-r

sh(l)

If the -c flag is present, commands are read from
string.
If the - s flag is present or if no arguments remain,
commands are read from the standard input. Any
remaining arguments specify the positional parame­
ters. Shell· output (except for special commands, see
"Special Commands," above) is written to file
descriptor 2.
If the -i flag is present or if the shell input and out­
put are attached to a terminal, this shell is interac-
tive. In this case, Terminate is ignored (so that
kill 0 does not kill an interactive shell) and Inter­
rupt is caught and ignored (so that wai t is interrup-
tible). In all cases, Quit is ignored by the shell.
If the -r flag is present, the shell is a restricted
shell.

The remaining flags and arguments are described under the set
command above.

rsh Only
rsh is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard
shell. The actions of rsh are identical to those of sh, except that
the following are disallowed:

changing directory
setting the value of $PATH
specifying path or command names containing /
redirecting output (> and > >)

The restrictions above are enforced after. profile is interpret­
ed.

When a command to be executed is found to be a shell procedure,
rsh invokes sh to execute it. Thus, it is possible to provide to
the end-user shell procedures that have access to the full power of
the standard shell, while imposing a limited menu of commands;
this scheme assumes that the end-user does not have write and ex­
ecute permissions in the same directory.

The net effect of these rules is that the writer of the. profile
has complete control over user actions, by performing guaranteed
setup actions and leaving the user in an appropriate directory
(probably not the login directory).

February, 1990 16
Revision C

sh(l) sh(l)

The system administrator often sets up a directory of commands
(i.e., /usr / rbin) that can be safely invoked by rsh. Some sys­
tems also provide a restricted editor red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell
to return a nonzero exit status. If the shell is being used nonin­
teractively, execution of the shell file is abandoned. Otherwise,
the shell returns the exit status of the last command executed (see
also the exi t command above).

EXAMPLES
sh -x seriptl

will execute each command in s e r i pt 1, echoing the command
just before executing it.

FILES
/bin/sh
Jete/profile
$HOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
aeeteom(l), esh(1), ehsh(1), eeho(l), env(l), ksh(l),
login(l), newgrp(l), pwd(I), aeetems(IM), exee(2),
fork(2), pipe(2), ulimi t(2), umask(2), wai t(2),
dup(3), signal(3), a. out(4), profile(4), environ(5),
"Bourne Shell Reference" in AIUX User Interface.

CAVEATS
If a command is executed, and a command with the same name is
installed in a directory in the search path before the directory
where the original command was found, the shell will continue to
exee the original command. Use the hash command to correct
this situation.

If you move the current directory or one above it, pwd may not
give the correct response. Use the ed command with a full path­
name to correct this situation.

BUGS

17

Filename pattern matching is not done on redirected I/O
filenames.

February, 1990
RevisionC

shl(1) shl(1)

NAME
shl - shell layer manager

SYNOPSIS
shl

DESCRIPTION
shl allows a user to interact with more than one shell from a sin­
gle terminal. The user controls these shells, known as layers, us­
ing the commands described below.

The current layer is the layer which can receive input from the
keyboard. Other layers attempting to read from the keyboard are
blocked. Output from multiple layers is multiplexed onto the ter­
minal.

The stty character swtch (set to CONTROL-z if NULL) is used
to switch control to shl from a layer. shl has its own prompt,
»>, to help distinguish it from a layer.

A layer is a shell which has been bound to a virtual tty device
(I dev / sxt / ? ??). The virtual device can be manipulated like a
real tty device using stty(1) and ioctl(2). Each layer has its
own process group ID.

Note: Only one instance of shell layering may be invoked
in any given login session.

Definitions
A name is a sequence of characters delimited by a blank, tab or
newline. Only the first eight characters are significant. The
names (1) through (7) cannot be used when creating a layer.
They are used by shl when no name is supplied. They may be
abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt
level. Any unique prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If
no argument is given, a layer will be created with a name of
the form (#) where # is the last digit of the virtual device
bound to the layer. The shell prompt variable P S 1 is set to
the name of the layer followed by a space. A maximum of
seven layers can be created.

February, 1990
Revision C

1

shl(l) shl(l)

block name [name ...]
For each name, block the output of the corresponding layer
when it is not the current layer.

delete name [name ...]
For each name, delete the corresponding layer. All processes
in the process group of the layer are sent the S I GHUP signal
(see signal(3».

help (or ?)
Print the syntax of the shl commands.

layers [-1] [name . ..]
For each name, list the layer name and its process group.
The -1 flag option produces a ps(I)-like listing. If no argu­
ments are given, information is presented for all existing
layers.

resume [name]
(followed by RETURN). Make the layer referenced by name
the current layer. If no argument is given, the last existing
current layer will be resumed.

toggle
(followed by RETURN). Resume the layer that was current
before the last current layer.

unblock name [name ...]
For each name, do not block the output of the corresponding
layer when it is not the current layer.

quit
Exit shl. All layers are sent the SIGHUP signal.

name
(followed by RETURN). Make the layer referenced by name
the current layer.

FILES
/usr/bin/shl
/dev/sxt/???
$SHELL

Virtual tty devices
Variable containing path name of the shell
to use (default is /bin/ sh) .

SEE ALSO
sh(1), st ty(I), ioctl(2), signal(3), sxt(7).
A/UX User I merface.

2 February, 1990
Revision C

size(l) size(l)

NAME
size - display section sizes of common object files

SYNOPSIS
size [-d] [-0] [-V] [-x]file ...

DESCRIPTION
The size command produces section size information for each
section in the common object files. The name of the section is
shown followed by its size in bytes, physical address, and virtual
address.

Numbers are displayed in hexadecimal unless either the -0 or the
-d flag option is used, in which case they are displayed in octal or
in decimal, respectively. If necessary (for example, in a shell
script), the -x flag option may be specified to force hexadecimal
output.

The -v flag supplies the version information on the size com­
mand.

FILES
/bin/size

SEE ALSO
as(l), cc(l), ld(1), a. out(4).

DIAGNOSTICS
size: name: cannot open name cannot be read.
size: name: bad magic name is not an object file.

February, 1990
RevisionC

1

sleep(l) sleep(l)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
sleep suspends execution for time seconds. It is used to execute
a command after a certain amount of time as in:

(sleep 105; command) &

or to execute a command every so often, as in:

while true
do

done

EXAMPLES
label:

command
sleep 37

command » x
command » x
date » x
sleep 10
goto label

The preceding sh(l) script would execute the two commands and
append the results to file x, then sleep for 10 seconds and repeat
the process.

FILES
/bin/sleep

SEE ALSO
ala rm(2) , sleep(3C).

BUGS
time must be less than 65536 seconds.

1 February, 1990
Revision C

sno(l) sno(l)

NAME
sno - SNOBOL interpreter

SYNOPSIS
sno [file ... J

DESCRIPTION
sno is a SNOBOL compiler and interpreter (with slight differ­
ences). sno obtains input from the concatenation of the named
files and the standard input All input through a statement contain­
ing the label end is considered program and is compiled. The rest
is available to syspi t.

sno differs from SNOBOL in the following ways:

There are no unanchored searches. To get the same effect:

a* * b unanchored search for h.

a* x* b=xc unanchored assignment

There is no back referencing.

x=abc

a*x*x is an unanchored search for abc.

Function declaration is done at compile time by the use of
the (nonunique) label define. Execution of a function call
begins at the statement following the define. Functions
cannot be defined at run time, and the use of the name de­
fine is preempted. There is no provision for automatic
variables other than parameters. Examples:

define f ()
define f(a, b, c)

All labels except define (even end) must have a nonemp­
ty statement.

Labels, functions and variables must all have distinct names.
In particular, the nonempty statement on end cannot merely
name a label.

If start is a label in the program, program execution will
start there. If not, execution begins with the first executable
statement; define is not an executable statement.

There are no built-in functions.

February, 1990
Revision C

1

sno(l) sno(1)

Parentheses for arithmetic are not needed. Normal pre­
cedence applies. Because of this. the arithmetic operators /
and * must be set off by spaces.

The right side of assignments must be nonempty.

Either ' or" may be used for literal quotes.

The pseudo-variable sysppt is not available.

FILES
/usr/bin/sno

SEE ALSO
awk(1).
SNOBOL, a String Manipulation Language. by D. J. Farber. R. E.
Griswold, and I. P. Polonsky, JACM 11 (1964), pp. 21-30.

2 February. 1990
RevisionC

soelim(1) soelim(l)

NAME
soelim- eliminate. so's from nroff input

SYNOPSIS
soelim ffile ...]

DESCRIPTION
soelim reads the specified files or the standard input and per­
forms the textual inclusion implied by the nroff directives of the
form

.so somefile

when they appear at the beginning of input lines. This is useful
since programs such as tbl do not normally do this; it allows the
placement of individual tables in separate files to be run as a part
of a large document.

An argument consisting of a single minus (-) is taken to be a
filename corresponding to the standard input.

Note that inclusion can be suppressed by using , instead of ., for
example

'so /usr/lib/tmac.s

A sample usage of soelim would be:

soelim exum?n I tbl I nroff -rom I col I lp

FILES
/usr/ucb/soelim

SEE ALSO
col(l), eqn(l), nroff(l), tbl(l), troff(l),

BUGS
The format of the source commands must be consistent; exactly
one blank must precede and no blanks follow the file name.

February, 1990
Revision C

1

sort(l) sort(l)

NAME
sort - sort or merge files

SYNOPSIS
sort [-c] [-m] [-u] [-0 output] [-y[kmem]] [-zrecsz] [-d]
[-f] [-i] [-M] [-n] [-r] [-b] [-t x] [+posi [-pos2]] [file ...]

DESCRIPTION
sort sorts lines of all the named files together and writes the
result on the standard output The standard input is read if - is
used as a filename or no input files are named.

Comparisons are based on one or more sort keys extracted from
each line of input. By default there is one sort key (the entire in­
put line) and ordering is lexicographic by bytes in machine collat­
ing sequence.

FLAG OPTIONS

1

The following flag options alter the default behavior:

-c Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

-m Merge only because the input files are already sorted.

-u Suppress all but one (unique) line in each set of lines having
equal keys.

-0 output
Place the output in the file output instead of in the standard
output. This file may be the same as one of the inputs.
There may be optional blanks between -0 and output.

-ykmem
Sort using a specified amount of kilobytes of memory
(kmem) The amount of main memory used by the sort has a
large impact on its performance. Sorting a small file in a
large amount of memory is a waste. If this flag option is
omitted, sort begins using a system default memory size
and continues to use more space as needed. If this flag op­
tion is presented with the value, kmem, sort starts using
that number of kilobytes of memory, unless the administra­
tive minimum or maximum is violated, in which case the
corresponding extremum is used. Thus, -yO is guaranteed
to start with minimum memory. By convention, -y (with
no argument) starts with maximum memory.

February, 1990
RevisionC

sort(1) sort(1)

-zrecsz
Record in the sort phase the size of the longest line read so
buffers can be allocated during the merge phase. If the sort
phase is omitted via the c or -m flag options, a popular
system default size is used. Lines longer than the buffer
size causes sort to terminate abnormally. Supplying the
actual number of bytes (or some larger value) in the longest
line to be merged prevents abnormal termination.

The following flag options override the default ordering rules:

-d Use "dictionary" order. Only letters, digits, and blanks
(spaces and tabs) are significant in comparisons.

- f Fold lowercase letters into uppercase.

-i Ignore characters outside the ASCII range 040-0176 in
non-numeric comparisons.

-M Compare as months. The first three nonblank characters of
the field are folded to uppercase and compared so that JAN
< FEB < ... < DEC. Invalid fields compare low to JAN.
The -M flag option implies the -b flag option (see later in
this section).

-n Sort by arithmetic value an initial numeric string, consisting
of optional blanks, an optional minus sign, and zero or more
digits with optional decimal point. The -n flag option im­
plies the -b flag option (as described later). Note that the
-b flag option is only effective when restricted sort-key
specifications are in effect.

- r Reverse the sense of comparisons.

When ordering flag options appear before restricted sort key
specifications, the requested ordering rules are applied globally to
all sort keys. When attached to a specific sort key (as described
later), the specified ordering flag options override all global order­
ing flag options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at
pasl and ending just before pos2. The characters at positions
pasl and pos2 are included in the sort key (provided that pos2
does not precede posJ). A missing -pos2 designates the end of
the line.

February, 1990
Revision C

2

sort(l) sort(1)

Specifying pos1 and pos2 involves the notion of a field, a minimal
sequence of characters followed by a field separator or a newline.
By default, the first blank (space or tab) of a sequence of blanks
acts as the field separator. All blanks in a sequence of blanks are
considered to be part of the next field; for example, all blanks at
the beginning of a line are considered to be part of the first field.
The treatment of field separators can be altered by using the flag
options.

- b Ignore leading blanks when determining the beginning and
ending positions of a restricted sort key. If the - b flag op­
tion is specified before the first +pos1 argument, it is ap­
plied to all +pos1 arguments. Otherwise, the b flag may be
attached independently to each +pos1 or -pos2 argument
(as shown later).

-tx Use x as the field-separator character; x is not considered to
be part of a field (although it may be included in a sort key).
Each occurrence of x is significant; for example, xx delimits
an empty field.

Both of the arguments, pos1 and pos2, have the form m . n option­
ally followed by one or more of the flags b, d, f, i, n, r, where m
specifies the number of fields to skip from the beginning of the
line and n specifies the number of characters to skip beyond.
Thus, a starting position specified by +m . n is interpreted to mean
the n+ 1st character in the m+ 1st field. A missing . n means .0,
indicating the first character of the m+ 1st field. If the b flag is in
effect, n is counted from the first nonblank in the m+ 1st field;
+m.Ob refers to the first nonblank character in the m+ 1st field.

A last position specified by -m. n is interpreted to mean the nth
character (including separators) after the last character of the mth
field. A missing . n means . 0, indicating the last character of the
mth field. If the b flag is in effect, n is counted from the last lead­
ing blank in the m+ 1st field; -m.1 b refers to the first nonblank in
the m+ 1st field.

When there are multiple sort keys, later keys are compared only
after all earlier keys compare equal. Lines that otherwise compare
equal are ordered with all bytes significant.

EXAMPLES

3

To sort the contents of infile with the second field as the sort key,
use the command

February, 1990
Revision C

sort(1) sort(1)

sort +1 -2 infile

To sort, in reverse order, the contents of infilel and infile2, placing
the output in outfile and using the first character of the second field
as the sort key, use the command

sort -r -0 outfile +1.0 -1.2 infilel infile2

To sort, in reverse order, the contents of infilel and infile2 using
the first nonblank character of the second field as the sort key, use
the command

sort -r +1.0b -1.1b infilel infile2

To print the password file (passwd(4)) sorted by the numeric
user ID (the third colon-separated field), use the command

sort -t: +2n -3 /etc/passwd

To print the lines of the already sorted file infile, suppressing all
but the first occurrence of lines having the same third field (the
flag options -urn, with just one input file, make the choice of a
unique representative from a set of equal lines predictable), use
the command

sort -urn +2 -3 infile

FILES
/bin/sort
/usr/trnp/strn???

SEE ALSO
comm(l), join(1), rev(l), sortbib(l), tsort(l), uniq(l).

DIAGNOSTICS
sort comments and exits with nonzero status for various trouble
conditions (for example, when input lines are too long), and for
disorder discovered under the -c flag option.

When a newline character is missing from the last line of an input
file, sort appends one, prints a warning message, and continues.

February, 1990
RevisionC

4

sortbib(l) sortbib(l)

NAME
sortbib - sort bibliographic database

SYNOPSIS
sortbib [-skeys] database ...

DESCRIPTION
sortbib sorts files of records containing refer key-letters by
user-specified keys. Records may be separated by blank lines, or
by . [and .] delimiters, but the two styles may not be mixed to­
gether. This program reads through each database and pulls out
key fields, which are sorted separately. The sorted key fields con­
tain the file pointer, byte offset, and length of corresponding
records. These records are delivered using disk seeks and reads,
so sortbib may not be used in a pipeline to read standard input.

By default, sortbib alphabetizes by the first %A and the %D

fields, which contain the senior author and date. The - s flag op­
tion is used to specify new keys. For instance, - sATD will sort by
author, title, and date, while -sA+D will sort by all authors, and
date. Sort keys past the fourth are not meaningful. No more than
16 databases may be sorted together at one time. Records longer
than 4096 characters will be truncated.

sortbib sorts on the last word on the %A line, which is as­
sumed to be the author's last name. A word in the final position,
such as j r. or ed. , will be ignored if the name beforehand ends
with a comma. Authors with two-word last names or unusual con­
structions can be sorted correctly by using the nroff convention
\ 0 in place of a blank. A %Q field is considered to be the same as
%A, except sorting begins with the first, not the last, word. sort -
bib sorts on the last word of the %D line, usually the year. It also
ignores leading articles (like A or The) when sorting by titles in
the % T or % J fields; it will ignore articles of any modem European
language. If a sort-significant field is absent from a record,
sortbib places that record before other records containing that
field.

FILES
/usr/ucb/sortbib

SEE ALSO

1

addbib(I), indxbib(1), lookbib(1), refer(l),
roffbib(1).

February, 1990
RevisionC

sortbib(1) sortbib{l)

BUGS
Records with missing author fields should probably be sorted by
title.

February. 1990 2
Revision C

spell(l) spell(l)

NAME
spell, hashmake, spellin, hashcheck - find spelling
errors

SYNOPSIS
spell [-v] [-b] [-x] [-1] [+local-file] [file ...]

/usr/lib/spell/hashmake

/usr/lib/spell/spellinn

/ us r / lib / spell /hashcheck spelling-list

DESCRIPTION

1

spell collects words from each namedfile and locates them in a
spelling list. Words that neither occur among nor are derivable
(by applying certain inflections, prefixes, or suffixes) from words
in the spelling list are printed on the standard output. If no file is
named, words are collected from the standard input.

spell ignores most troff(l), tbl(1), and eqn(l) construc­
tions.

Under the -v flag option, all words not literally in the spelling list
are printed, and plausible derivations from the words in the spel­
ling list are indicated.

Under the -b flag option, British spelling is checked. In addition
to preferring centre, colour, programme, speciality, travelled, and
so on, this flag option insists upon -ise in words like standardise

Under the -x flag option, every plausible stem is printed with =
for each word.

By default, spell, like deroff(l), follows chains of included
files (. so and . nx troff(l) requests), unless the names of such
included files begin with /usr/lib. Under the -1 flag option,
spell follows the chains of all included files.

Under the +local-file flag option, words found in local-file are re­
moved from the output of spell. The placeholder local-file is
the name of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can specify a set of
words that are correct spellings (in addition to the spelling list in­
cluded in spell) for each job.

The spelling list is based on many sources, and while more hapha­
zard than an ordinary dictionary, it is also more effective with
respect to proper names and popular technical words. Coverage

February, 1990
Revision C

spell(l) spell(l)

of the specialized vocabularies of biology, medicine, and chemis­
try is light.

Pertinent auxiliary files may be specified by name arguments, in­
dicated below with their default settings and listed in the section
"FILES." Copies of all output are accumulated in the history file.
The stop list filters out misspellings (for example,
thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by
spell:

hashmake Read a list of words from the standard input and
write the corresponding nine-digit hash code on the
standard output.

spellin n Read n hash codes from the standard input and
write a compressed spelling list on the standard
output. Information about the hash coding is print­
ed on standard error. The compressed spelling list
from the spellin output is in binary format and
should be generally redirected into a file or a pipe.

hashcheck Read a compressed spelling-list and recreate the
nine-digit hash codes for all the words in it; it
writes these codes on the standard output.

EXAMPLES
spell filea fileb filec > mistakes

would put a list of the words from filea, fileb, and filec
that were not part of the on-line dictionary into the file
mistakes.

The following example creates the hashed spelling list hlist and
checks the result by comparing the two temporary files; they
should be equal.
cat wds I /usr/1ib/spe11/hashmake I sort -u >tmpl
cat tmpl I /usr/1ib/spe11/spe11in 'cat tmpl I wc -1' >h1ist
cat hlist I /usr/1ib/spell/hashcheck >tmp2
diff tmpl tmp2

FILES
/bin/spell
/usr/lib/spell
/usr/lib/spell/spellin
/usr/lib/spell/hashcheck
/usr/lib/spell/hashmake

February, 1990
Revision C

2

spell(l) spell(l)

D SPELL=/usr/lib/spell/hlist[ab]
S-SPELL=/usr/lib/spell/hstop
H-SPELL=/usr/lib/spell/spellhist
!usr/lib/spell/spellprog
/usr/lib/spell/compress

SEE ALSO
diction(l), deroff(l), eqn(l), sed(l), sort(l), style(l),
tbl(l), tee(l), troff(l).

BUGS

3

The spelling list's coverage is uneven; new installations will prob­
ably wish to monitor the output for several months to gather local
additions. Typically, these are kept in a separate local file that is
added to the hashed spelling-list via spellin.

The British spellings are incomplete.

February, 1990
Revision C

spellin(l)

February, 1990
Revision C

See spell(1)

spellin(l)

1

spline(lG) spline(lG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [-a] [-k] [-n] [-p] [-x]

DESCRIPTION
spline takes pairs of numbers from the standard input as abscis­
sas and ordinates of a function. It produces a similar set, which is
approximately equally spaced and includes the input set, on the
standard output. The cubic spline output (R. W. Hamming, Nu­
merical Methods for Scientists and Engineers, 2nd ed., pp. 349ft)
has two continuous derivatives, and sufficiently many points to
look smooth when plotted.

The following flag options are recognized, each as a separate ar­
gument:

-a Supply abscissas automatically (they are missing from the in­
put); spacing is given by the next argument, or is assumed to
be 1 if next argument is not a number.

- k The constant k used in the boundary value computation:

is set by the next argument (default k = 0).

-n Space output points so that approximately n intervals occur
between the lower and upper x limits (default n = 100).

-p Make output periodic, i.e., match derivatives at ends. First
and last input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Nor­
mally, these limits are calculated from the data. Automatic
abscissas start at lower limit (default 0).

EXAMPLES

1

spline -n 10 > spline. out
o 0
1 2
2 4
3 9

February, 1990
RevisionC

spline(1G)

will create the file spline. out with the contents:

3.000000 8.999999
2.666667 7.096296
2.333333 5.370370
2.000000 4.000000
1.666667 3.096296
1.333333 2.503703
1.000000 2.000000
0.666667 1.407407
0.333333 0.725926
0.000000 0.000000

FILES
/usr/bin/spline

DIAGNOSTICS

spline(1G)

When data is not strictly monotone in x, spline reproduces the
input without interpolating extra points.

SEE ALSO
graph(lG), tplot(lG).

BUGS
A limit of 1,000 input points is enforced silently.

February, 1990 2
Revision C

split(l) split(l)

NAME
spli t - split a file into pieces

SYNOPSIS
spli t [-n] rJile [name]]

DESCRIPTION
s p 1 it reads file and writes it in n-line pieces (default 1000 lines)
onto a set of output files.
The name of the first output file is name with aa appended, and
so on lexicographically, up to zz (a maximum of 676 files). name
cannot be longer than 12 characters. If no output name is given, x
is default.

If no input file is given, or if - is given in its stead, then the stan­
dard input file is used.

EXAMPLES
split -100 filea newfile

would split f i 1 e a into l00-line pieces and put them in
newfileaa, newfileab, and so forth until the end of filea.

FILES
/usr/bin/split

SEE ALSO
bfs(I), cspli t(I), fspli t(I).

1 February, 1990
RevisionC

ssp(1) ssp(l)

NAME
ssp - make output single spaced

SYNOPSIS
ssp [-] [name ••.]

DESCRIPTION
ssp removes extra blank lines from its input, compressing two or
more blank lines into one. Note that if a line contains any charac­
ters at all (including spaces or tabs), then ssp does not considered
it to be blank. ssp can be used directly, or as a filter after nroff
or other text formatting operations.

The - option removes all blank lines.

EXAMPLES
The command

nroff -ms filea fileb I ssp > filec

would nroff the files with the -ms macro package, then single
space the output and put it into fiiec.

FILES
/usr/bin/ssp

SEE ALSO
awk(l), sed(l).

February, 1990
Revision C

1

strings(l) strings(l)

NAME
strings - find the printable strings in an object or other binary
file

SYNOPSIS
strings [-] [-0] [-number].file ...

DESCRIPTION
strings looks for ASCII strings in a binary file. A string is any
sequence of 4 or more printing characters ending with a newline
or a null. Unless the - flag is given, strings only looks in the
initialized data space of object files. If the -0 flag is given, then
each string is preceded by its offset in the file (in octal). If the -
number flag is given, then number is used as the minimum string
length rather than 4.

strings is useful for identifying random object files and many
other things.

EXAMPLES
strings obj1

will locate the ASCII-character strings in the object file ob j 1.

FILES
/bin/strings

SEE ALSO
od(l), xstr(l).

BUGS
The algorithm for identifying strings is extremely primitive.

1 February, 1990
RevisionC

strip(l) strip(1)

NAME
strip - strip symbol and line number information from an
object file

SYNOPSIS
strip [-1] [-r] [-s] [-V] [-x]file ...

DESCRIPTION
The strip command strips the symbol table and line number in­
formation from object files, including archives. When strip has
been performed, no symbolic debugging access is available for
that file; therefore, this command is normally run only on produc­
tion modules that have been debugged and tested.

The amount of information stripped from the symbol table can be
controlled by using the following flag options:

-1 Strip line number information only; do not strip any symbol
table information.

-x Do not strip static or external symbol information.

- r Reset the relocation indexes into the symbol table.

- s Reset the line number indexes into the symbol table (do not
remove). Reset the relocation indexes into the symbol table.

-v Print the version of the s t rip command executing on the
standard error output.

If there are any relocation entries in the object file and any symbol
table information is to be stripped, strip complains and ter­
minates without stripping filename unless the - r flag is used.

If the strip command is executed on a common archive file (see
ar(4)) the archive symbol table is removed. The archive symbol
table must be restored by executing the ar(1) command with the
s flag option before the archive can be link edited by the 1 d(1)
command. s t rip instructs the user with appropriate warning
messages when this situation arises.

The purpose of this command is to reduce the file storage over­
head taken by the object file.

FILES
/bin/strip
/usr/tmp/str??????

February, 1990
Revision C

1

strip(l) strip(l)

SEE ALSO
as(1), cc(I), ld(I), sdb(1), ar(4), a. out(4).

DIAGNOSTICS

2

strip: name: cannot open
name cannot be read.

strip: name: bad magic
name is not an object file.

strip: name: relocation entries present
name contains relocation entries and the - r flag was not
used; therefore, the symbol table information cannot be
stripped.

February, 1990
RevisionC

stty(1) stty(l)

NAME
s tty - set the modes for a terminal

SYNOPSIS
stty [-n file] [-a] [-g] [options]

DESCRIPTION
stty sets certain terminal I/O modes for the device that is the
current standard input; without arguments, it reports the settings of
certain modes.

With the -n file flag option, s tty opens the file specified by file
with the option 0_ NODELAY and uses it as standard input. (This
means that it will open modem-controlled lines immediately in­
stead of waiting for a carrier.)

With the -a flag option, s tty reports all of the option settings.

With the -g flag option, stty reports current settings in a form
that can be used as an argument to another s tty command. De­
tailed information about the modes listed in the groups "Control
Modes", "Input Modes", "Output Modes", "Local Modes",
and "Control Assignments" may be found in termio(7). Flag
options in the "Combination Modes" group are implemented by
using options in any of those five groups. Note that many combi­
nations of options make no sense, however, no checking is per­
formed.

The options are selected from the following:

Control Modes
parenb (-parenb) Enable (disable) parity generation and

detection.

parodd (-parodd) Select odd (even) parity.

cs5 cs6 cs7 cs8 Select character size (see termio(7)).

o Hang up phone line immediately.

50 75 110 134 150 200 300 600 1200
1800 2400 4800 9600 exta extb

February, 1990
Revision C

Set terminal baud to the number given, if
possible. (All speeds are not supported
by all hardware interfaces; 9600 baud is
assumed.) 19200 is equivalent to exta.
38400 is equivalent to extb.

1

stty(l)

2

hupcl (-hupcl)

hup (-hup)

cstopb (-cstopb)

cread (-cread)

clocal (-clocal)

loblk (-loblk)

Input Modes
ignbrk (-ignbrk)

brkint (-brkint)

ignpar (-ignpar)

parmrk (-parmrk)

inpck (-inpck)

istrip (-istrip)

inlcr (-inlcr)

igncr (-igncr)

icrnl (-icrnl)

iuclc (-iuclc)

ixon (- ixon)

ixany (-ixany)

ixoff (-ixoff)

stty(l)

Hang up (do not hang up) modem con­
nection on last close.

Same as hupcl (-hupcl).

Use two (one) stop bits per character.

Enable (disable) the receiver.

Assume a line without (with) modem
control.

Block (do not block) output from a non­
current layer.

Ignore (do not ignore) break on input.

Signal (do not signal) INTR on break.

Ignore (do not ignore) parity errors.

Mark (do not mark) parity errors (see
termio(7».

Enable (disable) input parity checking.

Strip (do not strip) input characters to
seven bits.

Map (do not map) NL to CR on input.

Ignore (do not ignore) CR on input.

Map (do not map) CR to NL on input.

Map (do not map) uppercase alphabetics
to lowercase on input.

Enable (disable) START/STOP output
control. Output is stopped by sending an
ASCII DC3 and started by sending an
ASCII DCI.

Allow any character (only DCl) to restart
output.

Request that the system send (not send)
START/STOP characters when the input
queue is nearly empty/full.

February, 1990
RevisionC

stty(l)

Output Modes
opost (-opost)

oleue (-oleue)

onler (-onler)

oernl (-oernl)

onoer (-onoer)

onlret (-onlret)

of ill (-Of ill)

of del (-of del)

erO erl er2 er3

nlO nll

stty(l)

Post-process output (do not post-process
output; ignore all other output modes).

Map (do not map) lowercase alphabetics
to uppercase on output.

Map (do not map) NL to CR-NL on out­
put.

Map (do not map) CR to NL on output.

Do not (do) output a CR at column zero.

On the terminal, NL performs (does not
perform) the CR function.

Use fill characters (use timing) for de­
lays.

Fill characters are DELs (NULs).

Select style of delay for returns (see
termio(7».

Select style of delay for linefeeds (see
termio(7».

tabO tabl tab2 tab3

bsO bsl

ffO ffl

vtO vtl

Local Modes
isig (-isig)

ieanon (-ieanon)

xease (-xease)

February, 1990
Revision C

Select style of delay for horizontal tabs
(see termio(7».

Select style of delay for backspaces (see
termio(7».

Select style of delay for form-feeds (see
termio(7».

Select style of delay for vertical tabs (see
termio(7».

Enable (disable) the checking of charac­
ters against the special control characters
INTR, QUIT, and SWTCH.

Enable (disable) canonical input (ERASE
and KILL processing).

Canonical (unprocessed) upper/lower­
case presentation.

3

stty(l) stty(l)

4

echo (-echo)

echoe (-echoe)

echok (-echok)

lfkc (-lfkc)

echonl (-echonl)

noflsh (-noflsh)

stwrap (-stwrap)

stflush(-stflush)

Echo back (do not echo back) every char­
acter typed.

Echo (do not echo) ERASE character as
a backspace-space-backspace string.

Note: This mode will erase the
ERASEed character on many
CRT terminals; however, it does
not keep track of column position
and, as a result, may be confusing
on escaped characters, tabs, and
backspaces.

Echo (do not echo) NL after KILL char­
acter.

Same as echok (-echok); obsolete.

Echo (do not echo) NL.

Disable (enable) flush after INTR, QUIT,
orSWTCH.

Disable (enable) truncation of lines
longer than 79 characters on a synchro­
nous line.

Enable (disable) flush on a synchronous
line after every wri te(3).

stappl (-stappl) Use application mode (use line mode) on
a synchronous line.

Control Assignments
erase c

kill c

intr c

quit c

Set erase character to c (by default, set to
DELETE in the NUX standard distribu­
tion).

Set kill character to c (by default, set to
CONlROL-U in the NUX standard distri­
bution).

Set interrupt character to c (by default,
set to CONlROL-C in the NUX standard
distribution).

Set quit character to c (by default, set to
CONlROL-1 in the NUX standard distri-

February, 1990
Revision C

stty(l)

swtch c

eof c

eol c

min c

time c

line i

stty(l)

bution).

Set switch character to c (by default, set
to CONTROL-' in the A/UX standard dis­
tribution).

Set EOF character to c (by default, set to
CONTROL-D in the NUX standard distri­
bution).

Set EOL character to c (by default, set to
CONfROL-' in the NUX standard distri­
bution).

Set min character to c (min is used only
with -icanon; (see termio(7».

Set time character to c (t ime is used
only with -icanon; (see termio(7».

If c is preceded by a circumflex (~) ap­
propriately escaped from the shell, then
the value used is the corresponding con­
trol character (for example, ~ d is a
CONfROL-D, ~ ? is interpreted as
DELETE, and ~ is interpreted as
undefined).

Set line discipline to i (0 ~ i < 127).

BSD 4.2 Compatible Features
susp c Set the suspend character to c. When

typed, the suspend character sends
SIGTSTP to the current process group.

dsusp c When set and a program attempts to read
terminal input, SIGTSTP is sent to the
current process group.

to stop (-t 0 5 t op) When set, background processes which
write on the control tty will be stopped
until brought into foreground by the
shell.

Combination Modes
evenp or parity Enable parenb and cs7.

oddp Enable parenb, cs 7, and parodd.

February, 1990 5
Revision C

stty(1) stty(1)

6

-parity, -evenp, or -oddp
Disable parenb, and set es8.

raw (-raw or cooked)
Enable (disable) raw input and output (no
ERASE, KILL, INTR. QUIT. SWTCH.
EOT, or output post processing).

nl (-nl) Unset (set) iernl and onler. In addi­
tion -nl unsets inler, igner,
oernl, and onlret.

lease (-lease) Set (unset) xease, iuele, and 01-
cue.

LCASE (-LCASE) Same as lease (-lease).

tabs (-tabs or tab3)
Preserve (expand to spaces) tabs when
printing.

ek Reset ERASE and KILL characters back
to normal DELETE and CONTROL-U.

sane

term

Reset all modes to some reasonable
values.

Set all modes suitable for the terminal
type term, where term is one of tty33,
tty37, vtOS, tn300, ti 700, or tek.

Hardware-specific Modes
modem (-modem) Enable (disable) modem control for this

device. Normally, this is only turned on
for lines connected to modems. Such
lines cannot be opened (see open(2» un­
less the device's data carrier detect line
(DCD) is asserted by an external device
such as a modem. Not all devices sup­
port this option; refer to the specific
device's documentation for details. This
option is on by default for / dev / modem
and / dev / tty o. Since it uses the same
signal line as dtrflow and emodem,
these options cannot be used at the same
time.

February, 1990
RevisionC

stty(1) stty(l)

emodem (-emodem) Enable (disable) "European style"
modem control. Similar to modem, as
described previously. Refer to ter-
000(7) for further information.

dtrflow (-dtrflow)
hxctl (-hxctl) Enable hardware flow control for this

device using the DCD line as input. This
is normally used as a flow control with
devices such as printers. Not all devices
support this option; refer to the specific
device's documentation for details.
These options are on by default for
/dev/printer and /dev/ttyl.
Since they use the same signal line as
modem and emodem, dtrflow cannot
be used at the same time as those options.
Note that dtrflow and hxctl are
synonymous and cannot be used at the
same time.

flow (-flow) Enable hardware flow control using the
request to send and clear to send lines
(RTS/CTS) on a serial device. Not all
devices support this option; refer to the
specific device's documentation for de­
tails. Often it is preferable and easier to
use XON/XOFF (ixon, ixoff and ix­
any) which is supported for all devices.

The hardware-specific modes all apply to modem control; not all
devices support all or any of them. If any of them are supported,
then UIOCTTSTAT is supported. The default mode is
UIOCNOMODEM/UIOCNOFLOW. All these are "remembered"
when a device is closed and reopened again.

FILES
/bin/stty

SEE ALSO
tabs(I), ioctl(2), termio(7).

February, 1990
Revision C

7

style(l) style(l)

NAME
sty 1 e - analyze surface characteristics of a document

SYNOPSIS
style [-ml] [-mm] [-a] [-e] [-1 nwn] [-r num] [-p] [-p]
file ...

DESCRIPTION
style analyzes the surface characteristics of the writing style of
a document. It reports on readability, sentence length and struc­
ture, word length and usage, verb type, and sentence openers. Be­
cause style runs deroff before looking at the text, formatting
header files should be included as part of the input. The default
macro package -ms may be overridden with the flag -mm, The
flag -ml, which causes deroff to skip lists, should be used if the
document contains many lists of nonsentences. The other flag op­
tions are used to locate sentences with certain characteristics.

-a print all sentences with their length and readability index.

-e print all sentences that begin with an expletive.

-p print all sentences that contain a passive verb.

-1 num
print all sentences longer than num.

-r num
print all sentences whose readability index is greater than
num.

- P print parts of speech of the words in the document.

FILES
/usr/ucb/style
/usr/lib/stylel
/usr/lib/style2
/usr/lib/style3

SEE ALSO
deroff(l), diction(l), spell(l).

BUGS

1

Use of nonstandard formatting macros may cause incorrect sen­
tence breaks.

February, 1990
Revision C

su(l) su(l)

NAME
s u - substitute user ID

SYNOPSIS
su [-] [name[arg ...]]

DESCRIPTION
s u allows a user to become another user without logging off. The
default user name is root (that is, superuser).

To use su, the appropriate password must be supplied (unless one
is already root). If the password is correct, su will execute a
new shell with the real and effective user ID set to that of the
specified user. The new shell will be the optional program named
in the shell field of the specified user's password file entry (see
passwd(4», or /bin/ sh if none is specified (see sh(I». To re­
store normal user ID privileges, type an EOF (CONIROL-D) to the
new shell.

Any additional arguments given on the command line are passed
to the program invoked as the shell. When using programs like
sh(1), an arg of the form -c string executes string via the shell
and an argument of - r will give the user a restricted shell.

The following statements are true only if the optional program
named in the shell field of the specified user's password file entry
is like sh(I). If the first argument to su is a -, the environment
will be changed to what would be expected if the user actually
logged in as the specified user. This is done by invoking the pro­
gram used as the shell with an argO value whose first character is
-, thus causing the system's profile (I etc/profile) and then
the specified user's profile (. profile in the new HOME directo­
ry) to be executed. Otherwise, the environment is passed along
with the possible exception of $PATH, which is set to
/bin: /etc: /usr/bin: /usr/etc for root. Note that if
the optional program used as the shell is /bin/ sh, the user's
. profile can check argO for -sh or -su to determine if it was
invoked by login(1) or su(1), respectively. If the user's pro­
gram is other than /bin/ sh, then the program is invoked with an
argO of -program by both login(l) and su(I).

All attempts to become another user using su are logged in the
log file /usr / adm/ sulog.

February, 1990 1
Revision C

su(l) su(l)

EXAMPLES
The command

su trip

would cause the system to prompt for trip's password; if the
password is typed in correctly, trip's identity is substituted.

To become user bin while retaining the previously exported en­
vironment, execute

su bin

To become user bin but change the environment to what would
be expected if bin had originally logged in, execute

su - bin

To execute command with the temporary environment and permis­
sion of user bin, type

su - bin -e "command args"

FILES
/bin/su
/ete/passwd
fete/profile
$HOME.profile
/usr/adm/sulog

SEE ALSO

2

esh(l), env(l), ksh(l), login(l), sh(1), passwd(4), pro­
file(4), environ(5).

February, 1990
RevisionC

subj (1) subj(l)

NAME
subj - generate a list of subjects from a document

SYNOPSIS
subj file ...

DESCRIPTION
sub j searches files for subjects that might be appropriate in a
subject-page index and prints the list of subjects on the standard
output. The document should contain formatting commands (from
nroff, troff, and rom among others) to make the best use of
subj.

FILES
/usr/bin/subj

SEE ALSO
rom(1), ndx(1), troff(l).

WARNINGS
sub j selects sequences of capitalized words as subjects except
the first word in each sentence. Thus, if a sentence begins with a
proper noun, the capitalization rule will not select this word as a
subject. On the other hand, since each sentence is expected to be­
gin on a newline, the first word of a sentence that begins in the
middle of a line may be erroneously selected.

The output of sub j may not be appropriate for your needs and
should be edited accordingly.

BUGS
subj also selects as subjects modifier-noun sequences from the
abstract, headings, and topic sentences (the first sentence in each
paragraph), and occasionally a word is incorrectly categorized as a
noun or adjective.

February, 1990
Revision C

1

sum(l) sum(l)

NAME
sum - calculate a checksum

SYNOPSIS
sum [-r] file ...

DESCRIPTION
sum calculates and displays a 16-bit checksum for the named file,
and also displays the number of blocks in the file. It is typically
used to look for bad spots, or to validate a file communicated over
some transmission line. The flag option - r causes an alternate al­
gorithm to be used in computing the checksum.

EXAMPLES
sum filea

produces the checksum and the block count of filea.

FILES
/bin/sum

SEE ALSO
sumdir(1), wc(I).

DIAGNOSTICS
Read error is indistinguishable from end-of-file on most dev­
ices; check the block count.

1 February, 1990
Revision C

sumdir(l) sumdir(l)

NAME
s umdi r - sum and count characters in the files in the given
directories

SYNOPSIS
sumdir [directories]

DESCRIPTION
sumdir provides a recursive checksum of all files in the specified
directory. It calculates and prints a 16-bit checksum for the
named file, and also prints the number of characters in the file. It is
typically used to look for bad spots on the file system, or to vali­
date a file transmitted over some transmission line. The output
from this program differs from the output from the s um(1) pro­
gram in that sumdir prints the number of characters rather than
the number of blocks in the file.

EXAMPLES
sumdir man1

produces the checksum and the character count of the files in the
directory man 1.

FILES
/usr/bin/sumdir

SEE ALSO
sum(1).

February, 1990
Revision C

1

sync(l) sync(l)

NAME
sync - update the superblock

SYNOPSIS
sync

DESCRIPTION
sync executes the sync system primitive. If the system is to be
stopped, sync must be called to insure file system integrity. It
will flush all previously unwritten system buffers out to disk, thus
assuring that all file modifications up to that point will be saved.
See sync(2) for details.

EXAMPLES
sync

should be typed to flush all internal disk buffers, before bringing
down the system.

FILES
/bin/sync

SEE ALSO
shutdown(lM), sync(2).

1 February, 1990
RevisionC

sys1ine(l) sys1ine(1)

NAME
sys1ine - display system status on status line of a terminal

SYNOPSIS
sys1ine [-b] [-c] [-d] [-e] [-h] [-D] [-i] [-1] [-m] [-p]
[-q] [-r] [-s] [-j] [-H remote] [+N]

DESCRIPTION
sys1ine runs in the background and periodically displays sys­
tem status information on the status line of the terminal. Not all
terminals contain a status line. Those that do include the h 19,
cl08, aaa, vt100, tvi925/tvi950 and Freedom 100.

Note: The Macintosh IT does not have a status line.

If no flags are given, sys1ine displays the time of day, the
current load average, the change in load average in the last 5
minutes, the number of users (followed by u), the number of runn­
able process (followed by r) the number of suspended processes
(followed by s), and the users who have logged on and off since
the last status report. Finally, if new mail has arrived, a summary
of it is printed. If there is unread mail in your mailbox, an asterisk
will appear after the display of the number of users. The display
is normally in reverse video (if your terminal supports this in the
status line) and is right-justified to reduce distraction. Every fifth
display is done in normal video to give the screen a chance to rest.

If you have a file named. who in your home directory, then the
contents of that file is printed first. One common use of this
feature is to alias chdir, pushd, and popd to place the current direc­
tory stack in - / . who after it changes the new directory.

The following flag options may be used on the command line:

-b Beep once every half hour and twice every hour,
just like those obnoxious watches you keep hear­
ing.

-c Clear the status line for 5 seconds before each
redisplay.

-d

-D

-e

February, 1990
Revision C

Debug mode - print status line data in
human-readable format

Print out the current day/date before the time.

Print out only the information. Do not print out the
control commands necessary to put the information

1

sysline(l) sysline(l)

2

-H remote

-h

-1

-m

-p

-r

+N

-q

-i

-s

-j

on the bottom line. This flag option is useful for
putting the output of sysline onto the mode line
of an emac s window.

Print the load average on the remote host remote. If
the host is down, or is not sending out rwhod
packets, then the down time is printed instead.

Print out the host machine's name after the time.

Don't print the names of people who log in and out.

Don't check for mail.

Don't report the number of process which are runn­
able and suspended.

Don't display in reverse video.

Update the status line every N seconds. The de­
fault is 60 seconds.

Don't print out diagnostic messages if something
goes wrong when starting up.

Print out the process ID of the sysline process
onto standard output upon startup. With this infor-
mation you can send the alarm signal to the s y s -
line process to cause it to update immediately.
sysline writes to the standard error, so you can
redirect the standard output into a file to catch the
process id.

Print "short" form of line by left-justifying. iff es­
capes are not allowed in the status line. Some ter­
minals (the tvi's and Freedom 100's, for example)
do not allow cursor movement (or other "intelli­
gent" operations) in the status line. For these ter­
minals, sysline normally uses blanks to cause
right-justification. This flag option will disable the
adding of the blanks.

Force the sysline output to be left-justified even on
terminals capable of cursor movement on the status
line.

If you have a file. syslinelock in your home directory, then
sysline will not update its statistics and write on your screen, it
will just go to sleep for a minute. This is useful if you want to dis-

February, 1990
RevisionC

sysline(l) sysline(l)

able sysline momentarily. Note that it may take a few seconds
from the time the lock file is created until you are guaranteed that
sysline will not write on the screen.

FILES
/usr/ucb/sysline
/etc/utmp

/dev/kmem
/usr/spool/rwho/whod.*

${HOME}/.who

${HOME}/.syslinelock

SEE ALSO
ps(l), pstat(1).

BUGS

names of people who are
logged in
contains process table
who/uptime informa­
tion for remote hosts
information to print on
bottom line
when it exists, sysline
will not print

If you interrupt the display, you may find your cursor missing or
stuck on the status line. The best thing to do is to reset the termi­
nal.
If there is too much for one line, the excess is thrown away.

February, 1990
Revision C

3

systemfolder(I) systemfolder(I)

NAME
systemfolder - create a personal System Folder

SYNOPSIS
systemfolder [-f]

DESCRIPTION
systemfolder allows a user to create a personal Macintosh®
System Folder in his or her home directory. If a personal System
Folder already exists, it is updated with any files in the global Sys­
tem Folder that are not present in the personal Folder.

FLAG OPTIONS
systemfolder interprets one flag option, the force option.

-f By default, the System file is not updated if it already exists
in the personal System Folder. If this option is used, this
forces the update of the System file.

FILES

1

$HOME/System Folder
/mac/sys/System Folder/*

February, 1990
RevisionC

tabs(l} tabs(1}

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspee] [+m[n]] [-Ttype]

DESCRIPTION
tabs sets the tab stops on the user's terminal according to the tab
specification tabspee, after clearing any previous settings. The
user must have remotely-settable hardware tabs.

Users of TermiNet terminals should be aware that they behave dif­
ferently from most other terminals for some tab settings. The first
number in a list of tab settings becomes the left margin on a Ter­
miNet terminal. Thus, any list of tab numbers whose first element
is other than 1 causes a margin to be left on a TermiNet, but not
on other terminals. A tab list beginning with 1 causes the same ef­
fect regardless of terminal type. It is possible to set a left margin
on some other terminals, although in a different way (see below).

If no tabspee is given, the default value is -8, i.e., UNIX "stan­
dard" tabs. The lowest column number is 1. Note that for tabs,
column 1 always refers to the left-most column on a terminal,
even one whose column markers begin at 0, e.g., the DASI 300,
DASI 300s, and DASI 450.

tabs pee may be any of the following:

-a 1,10,16,36,72
Assembler, IBM® S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL, compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to card
column 7, one space gets you to column 8, and a tab
reaches column 12. Files using this tab setup should in­
clude a format specification as follows:

<:t-c2 m6 s66 d:>

February, 1990
Revision C

1

tabs(l) tabs(l)

(see --file flag option).

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with
more tabs than -c2. This is the recommended format for
COBOL. The appropriate format specification is:

<:t-c3 m6 s66 d:>

(see --file flag option).

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

-n A repetitive specification requests tabs at columns 1 +n,
1+2*n, etc. Note that such a setting leaves a left margin
of n columns on TermiNet terminals only. Of particular
importance is the value -8: this represents the UNIX
"standard" tab setting, and is the most likely tab setting
to be found at a terminal. It is required for use with the
nroff -h flag option for high-speed output. Another
special case is the value -0, implying no tabs at all.

nl,n2, ...
The arbitrary format permits the user to type any chosen
set of numbers, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except
the first one) is preceded by a plus sign, it is taken as an
increment to be added to the previous value. Thus, the
tab lists 1, 10, 20 , 30 and 1, 10 , + 1 0 , + 10 are con­
sidered identical.

--file If the name of a file is given, tabs reads the first line of
the file, searching for a format specification. If it finds

2 February, 1990
RevisionC

tabs(l) tabs(l)

one there, it sets the tab stops according to it, otherwise it
sets them as -8. This type of specification may be used
to make sure that a tabbed file is printed with correct tab
settings, and would be used with the pr(l) command:

tabs --file; prfile

Any of the following may be used also; if a given flag occurs more
than once, the last value given takes effect:

-Ttype tabs usually needs to know the type of tenninal in order
to set tabs and always needs to know the type to set mar­
gins. type is a name listed in term(5). If no -T flag is
supplied, tabs searches for the $TERM value in the en­
vironment (see environ(5)). If no type can be found,
tabs tries a sequence that will work for many terminals.

+m[n] The margin argument may be used for some terminals. It
causes all tabs to be moved over n columns by making
column n+l the left margin. If +m is given without a
value of n, the value assumed is 10. For a TermiNet, the
first value in the tab list should be 1, or the margin will
move even further to the right. The nonnal (left-most)
margin on most terminals is obtained by +mO. The mar­
gin for most tenninals is reset only when the +m flag is
given explicitly.

Tab and margin setting is performed via the standard output.

EXAMPLES
tabs -c

will send commands to the terminal to set the tabs for COBOL
format remotely.

tabs 6,12,18

will set tabs in columns 6, 12 and 18.

tabs -10

will set tabs in columns 11,21,31,41,51,61, and 71.

DIAGNOSTICS
illegal tabs

illegal increment

February, 1990
Revision C

when arbitrary tabs are ordered in­
correctly.
when a zero or missing increment is
found in an arbitrary specification.

3

tabs(l) tabs(l)

unknown tab code

can't open

file indirection

when a predefined code cannot be
found, where predefined codes in­
clude:
-a -a2 -c -c2 -c3 -f -p -s-u
if --file option is used, and file
can't be opened.
if --file option is used and the
specification in that file points to yet
another file. Indirection of this fonn
is not permitted.

FILES
/usr/bin/tabs

SEE ALSO
nroff(l), pr(l), tset(l), term(4), environ(5).

BUGS

4

There is no consistency among different terminals regarding ways
of clearing tabs and setting the left margin.
It is generally impossible to change the left margin usefully
without also setting tabs.
tabs clears only 20 tabs (on terminals requiring a long se­
quence), but is willing to set 64.

February, 1990
RevisionC

tail(1) tail(1)

NAME
tail- deliver the last part of a file

SYNOPSIS
tail [±[number][lbc[f]]] [file]

DESCRIPTION
tail copies the named file to the standard output beginning at a
designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or
-number from the end of the input (if number is null, the value 10
is assumed). number is counted in units of lines, blocks, or char­
acters, according to the appended option 1, b, or c. When no un­
its are specified, counting is by lines.

With the -f ("follow") flag option, if the input file is not a pipe,
the program will not terminate after the line of the input file has
been copied, but will enter an endless loop, wherein it sleeps for a
second and then attempts to read and copy further records from
the input file. Thus it may be used to monitor the growth of a file
that is being written by some other process. You must interrupt
tail to escape this loop.

EXAMPLES
tail -f jack

will print the last ten lines of the file jack, followed by any lines
that are appended to jack between the time tail is initiated and
interrupted.

tail -15cf jack

will print the last 15 characters of the file jack, followed by any
lines that are appended to jack between the time tail is initiat­
ed and interrupted.

FILES
/bin/tail

SEE ALSO
cat(I), dd(1), head(I), more(I), pg(1).

BUGS
tails relative to the end of the file are treasured up in a buffer,
and thus are limited in length. Various kinds of anomalous
behavior may happen with character special files.

February, 1990 1
Revision C

talk(lN) talk(lN)

NAME
talk - talk to another user

SYNOPSIS
talk person [ttyname]

DESCRIPTION

1

talk is a visual communication program that copies lines from
your terminal to that of another user.

If you wish to talk to someone on your own machine, then person
is just the person's login name. If you wish to talk to a user on
another host connected via Ethernet to a local network running B­
NET software, then person is of the form

host! user or
host. user or
host: user or
user@host

If you want to talk to a user who is logged in more than once, the
tty name argument may be used to indicate the appropriate termi­
nal name.

When first called, it sends the message

Message from TalkDaemon@hismachine
talk: connection requested by your name@your machine.
talk: respond with: talk your name@yourmachine

to the user to whom you wish to talk. At this point, the recipient
of the message should reply by typing

talk yourname@your machine

It doesn't matter from which machine the recipient replies, as long
as his login name is the same. Once communication is esta­
blished, the two parties may type simultaneously, with their output
appearing in separate windows. Typing CONTROL-L will cause
the screen to be reprinted, while your erase and kill characters will
work in talk as normal. To exit, just type your interrupt charac­
ter; talk then moves the cursor to the bottom of the screen and
restores the terminal.

Permission to talk may be denied or granted by use of the mesg
command. At the invocation of talk, talking is allowed. Certain
commands, in particular nroff(l) and pr(1), disallow messages
in order to prevent messy output.

February, 1990
RevisionC

talk(IN) talk(IN)

FILES
/usr/bin/talk
fete/hosts
/ete/utrnp

SEE ALSO

to find the recipient's machine
to find the recipient's tty

rnail(I), rnesg(1), who(I), wri te(1).
"Using B-NET" in A/UX Communications User's Guide.

February, 1990
Revision C

2

tar(l) tar(l)

NAME
tar - copy files to or from a tar archive

SYNOPSIS
tar [key] ffile ...]

DESCRIPTION

1

tar saves and restores files within an archive, which frequently is
magnetic tape media or floppy disks. Its actions are controlled by
the key argument The key is a string of characters containing a
maximum of one function letter and possibly one or more function
modifiers.

Other arguments to the command are files (or directory names)
specifying which files are to be dumped or restored. In all cases,
appearance of a directory name refers to the files and (recursively)
subdirectories of that directory. tar does not follow symbolic
links.

The function portion of the key is specified by one of the follow­
ing letters:

r The named files are written on the end of the tape. This
may not work on all media. It requires the ability to
"seek". The c function implies this function.

x The named files are extracted from the tape. If a named
file matches a directory whose contents had been written
onto the tape, this directory is (recursively) extracted. If
a named file on tape does not exist on the system, the file
is created with the same mode as the one on tape, except
that the set-user-ID and set-group-ID bits are not set un­
less you are superuser. If the files exist, their modes are
not changed except for the bits described above. The
owner, group, and modification time are restored (if pos­
sible). If no files argument is given, the entire content of
the tape is extracted. Note that if several files with the
same name are on the tape, the last one overwrites all
earlier ones.

t

u

The names of all the files on the tape are listed.

The named files are added to the tape if they are not al­
ready there or have been modified since last written on
that tape.

February, 1990
RevisionC

tar(1)

c

tar(1)

Create a new tape; writing begins at the beginning of the
tape, instead of after the last file. This command implies
the r function.

The following characters may be used in addition to the letter that
selects the desired function.

ns Where n is a tape drive number (0, ... , 7), and s is the
density (1 - low (800 bpi), m - medium (1600 bpi), or h -
high (6250 bpi)). This modifier selects the drive on
which the tape is mounted. The default is Om.

i Causes tar to ignore symbolic links.

v Nonnally, tar does its work silently. The v (verbose)
flag option causes it to type the name of each file it treats,
preceded by the function letter. With the t function, v
gives, in addition to the name, information about the tape
entries.

w Causes tar to print the action to be taken, followed by
the name of the file, and then to wait for the user's
confinnation. If a word beginning with y is given, the
action is performed. Any other input means' 'no" .

f Causes tar to use the next argument as the name of the
archive instead of / dev /mt / Om. If the name of the file
is -, tar writes to the standard output or reads from the

- standard input, whichever is appropriate. Thus, tar may
be used as the head or tail of a pipeline. tar may also
be used to move hierarchies with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

b Causes tar to use the next argument as the blocking fac­
tor for tape records. The default is I, the maximum is 20.
This flag option should only be used with raw magnetic
tape archives (see f). The block size is detennined au­
tomatically when reading tapes (key letters x and t).

1 Tells tar to complain if it cannot resolve all of the links
to the files being dumped. If 1 is not specified, no error
messages are printed.

m Tells tar not to restore the modification times. The
modification time of the file will be the time of extrac­
tion.

February, 1990
Revision C

2

tar(l) tar(l)

o Causes extracted files to take on the user and group
identifier of the user running the program rather than
those on the tape.

If more than one flag is used that requires an argument, the argu­
ments must be supplied in the same order that the flags were
specified.

This version of tar is capable of writing more than one tape or
disk. The user will be prompted to change media when necessary.
The next two flag options are used for tapes; the last is for disks.

d Causes tar to use the next argument as the tape's density.
The default density is 1600 bpi.

s Causes tar to use the next argument as the tape's length in
feet. The default length is 2300 feet.

B Causes tar to use the next argument as the number of
512-byte blocks on the disk.

EXAMPLES
cd fromdir; tar cf - . I (cd todir; tar xf -)

will copy directories from one directory tree (fromdir) to anoth­
er (todir).

FILES
/usr/bin/tar
/dev/rmt/*
/dev/mt/*
/tmp/tar*
/bin/mkdir
/bin/pwd

build directories during recovery
get working directory name

SEE ALSO
ar(1), cpio(I), dd(l), tp(1), dump. bsd(lM), tar(4).

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints that enough memory is not available to hold the link
tables.

BUGS

3

There is no way to ask for the nth occurrence of a file.
Tape errors are handled ungracefully.
The u flag option can be slow.
The b flag option should not be used with archives that are going
to be updated. The current magnetic tape driver cannot backspace

February, 1990
RevisionC

tar(l) tar(l)

raw magnetic tape. If the archive is on a disk file, the b flag op­
tion should not be used at all, because updating an archive stored
on disk can destroy it.
The current limit on filename length is 100 characters.
Empty directories are skipped when creating a tar archive.
Note that tar eOrn is not the same as tar ernO.
tar is unable to archive special devices.

February, 1990
Revision C

4

tbl(l) tbl(l)

NAME
tbl - format tables for nroff or troff

SYNOPSIS
tbl [-TX] [file . ..]

DESCRIPTION

1

tbl is a preprocessor that formats tables for nroff or troff.
The input files are copied to the standard output, except for lines
between . T S and . TE command lines, which are assumed to
describe tables and are reformatted by tbl. (The. TS and . TE
command lines are not altered by tbl) .

• T S is followed by global options. The available global options
are:

center
expand

center the table (default is left adjust);
make the table as wide as the current line
length;

box enclose the table in a box;
doublebox enclose the table in a double box;
allbox
tab (x)

enclose each item of the table in a box;
use the character x instead of a tab to
separate items in a line of input data.

The global options, if any, are terminated with a semicolon (;).

Next come lines describing the format of each line of the table.
Each such format line describes one line of the actual table, except
that the last format line (which must end with a period) describes
all remaining lines of the table. Each column of each line of the
table is described by a single keyletter, optionally followed by
specifiers that determine the font and point size of the correspond­
ing item, that indicate where vertical bars are to appear between
columns, that determine column width, intercolumn spacing, etc.
The available keyletters are:

c center item within the column;
r right adjust item within the column;
1 left adjust item within the column;
n numerically adjust item in the column: units positions

of numbers are aligned vertically;
s span previous item on the left into this column;
a center longest line in this column and then left adjust all

other lines in this column with respect to that centered
line;

February, 1990
Revision C

tbl(l)

A span down previous entry in this column;
replace this entry with a horizontal line;
replace this entry with a double horizontal line.

tbl(1)

The characters B and I stand for the bold and italic fonts, respec­
tively; the character I indicates a vertical line between columns.

The format lines are followed by lines containing the actual data
for the table, followed finally by . TE. Within such data lines,
data items are normally separated by tab characters.

If a data line consists of only or =, a single or double line,
respectively, is drawn across the table at that point; if a single item
in a data line consists of only or =, then that item is replaced by
a single or double line. -

Full details of all these and other features of tbl are given in the
reference manual cited below.

The -TX flag option forces tbl to use only full vertical line mo­
tions, making the output more suitable for devices that cannot gen­
erate partial vertical line motions (for example, line printers).

If no file names are given as arguments (or if - is specified as the
last argument), tbl reads the standard input, so it may be used as
a filter. When it is used with eqn(l) or neqn, tbl should come
first to minimize the volume of data passed through pipes.

EXAMPLES
In the following input, CONTROL-I (A I) represents a tab (which
should be typed as a genuine tab:

.TS
center box
cB s s
cI cI s
cI I cI s
1 Inn .
Household I Population

Town A I Households
A I Number A I Size

Bedminster A I789 A I3.26
Bernards Twp. AI3087 AI3.74
Bernardsville A I20l8 AI3.30
Bound Brook AI 3425 AI 3. 04

February, 1990
Revision C

2

tbl(1)

Bridgewater~I7897~I3.81

Far Hills~I240~I3.19
.TE

yields:

Household Population

Town
Households

FILES
/bin/tbl

SEE ALSO

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Bridgewater
Far Hills

Number Size
789 3.26

3087 3.74
2018 3.30
3425 3.04
7897 3.81
240 3.19

tbl(1)

eqn(I), mm(I), mvt(1), nroff(1), troff(1), mm(5), ms(5),
mv(5).
"tbl Reference" in A/UX Text Processing Tools.

BUGS
See BUGS under nroff(l).

3 February, 1990
RevisionC

tc(l) tc(l)

NAME
t c - interpret troff output for use at a vintage display device

SYNOPSIS
tc [-t] [-0 list] [-a n] [-e] (file] ...

DESCRIPTION
tc interprets its input (standard input default) as output from
troff(I). The standard output of tc is intended for a TEK­
TRONIX 4015 (a 4014 terminal with ASCII and APL character
sets). The various typeface sizes are mapped into the 4014's four
sizes; the entire troff character set is drawn with the 4014's
character generator, by using overstruck combinations where
necessary, producing an altogether displeasing effect.

Typical usage is

t ro f f troif-options file I t c

At the end of each page, tc waits for a newline (empty line) from
the keyboard before continuing to the next page. In this wait state,
the following commands are recognized.

! cmd Send cmd to the shell.

e Invert the state of the screen erase.

n Print page n (previously printed).

-n Skip backward n pages.

oUst Set -0 list to list.

p Print current page again.

an Set the aspect ratio to n.

? Print list of available options.

The flag options are

-t Do not wait between pages (for directing output into a
file).

-0 list Print only the pages enumerated in list. The list consists
of pages and page ranges (for example, 5-17) separated
by commas. The range n- goes from n to the end; the
range -n goes from the beginning to and including page
n.

-a n Set the aspect ratio to n; default is 1.5.

February, 1990
Revision C

1

te(1)

-e Do not erase before each page.

FILES
/usr/bin/tc

SEE ALSO
4014(1), nroff(I), tplot(IG), troff(I).

BUGS
Font distinctions are lost.

te(1)

t c needs a -w flag option to wait for input to arrive.

2 February, 1990
RevisionC

teb(1) teb(l)

NAME
t eb - block data to 8K for t e output

SYNOPSIS
command-line I t eb > / dev / rmt / t ex

DESCRIPTION
t eb reads standard input and writes standard output in a blocking
format suitable for the Apple SC 40 Tape Backup. The output of
t eb is always blocked at 8K to satisfy the blocking requirements
of the tape cartridge drive. The last output block is zero-filled as
necessary.

If the output of t eb is sent through another pipe before being
directed to the tape cartridge drive, the tape-specific blocking of
data t eb will be lost.

The following example illustrates how to create a tar archive on
cartridge tape. Substituting the SCSI ID of your tape cartridge
drive for x, enter

tar evf - . I teb >/dev/rmt/tex

To create an archive that will be larger than one tape, use the size
(8) flag option for tar. This flag option allows you to specify the
capacity of the tape cartridge in terms of 512-byte blocks. This
may be computed using a conversion factor of 2048 blocks per
MB.

To read from an archive written with tar and teb, use dd(1) and
specify an 8K blocking size. Better performance results from the
use of a larger input buffer size, as long as it is a multiple of 8K:

dd if=/dev/rmt/tex ibs=20x8K Itar xvf -

SEE ALSO
dd(1), tar(1), tc(7).

February, 1990
Revision C

1

tee(l) tee(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i] [-a] [file] ...

DESCRIPTION
tee transcribes the standard input to the standard output and
makes copies in the files. The -i flag option ignores interrupts;
the -a flag option causes the output to be appended to the files
rather than overwriting them.

EXAMPLES
make I tee x

will cause the output of the make program to be recorded on file
x as well as printed on standard output.

FILES
/bin/tee

1 February, 1990
RevisionC

telnet(lC) telnet(lC)

NAME
telnet - user interface to the TELNET protocol

SYNOPSIS
telnet [host [port]]

DESCRIPTION
telnet is used to communicate with another host using the TEL­
NET protocol. If telnet is invoked without arguments, it enters
command mode, indicated by its prompt ("telnet>"). In this
mode, it accepts and executes the commands listed below. If it is
invoked with arguments, it performs an open command (see
below) with those arguments.

Once a connection has been opened, telnet enters an input
mode. The input mode entered will be either "character at a
time" or "line by line" depending on what the remote system
supports.

In "character at a time" mode, most text typed is immediately
sent to the remote host for processing.

In "line by line" mode, all text is echoed locally, and (normally)
only completed lines are sent to the remote host. The "local echo
character" (initially ""'E") may be used to turn off and on the lo­
cal echo (this would mostly be used to enter passwords without
the password being echoed).

In either mode, if the localchars toggle is TRUE (the default in
line mode; see below), the user's quit, interrupt, and flush charac­
ters are trapped locally, and sent as TELNET protocol sequences
to the remote side. There are options (see toggle autojiush and
toggle autosynch below) which cause this action to flush subse­
quent output to the terminal (until the remote host acknowledges
the TELNET sequence) and flush previous terminal input (in the
case of quit and interrupt).

While connected to a remote host, telnet command mode may
be entered by typing the tel net "escape character" (initially
" '"] "). When in command mode, the normal terminal editing
conventions are available.

COMMANDS
The following commands are available. Only enough of each
command to uniquely identify it need be typed (this is also true for
arguments to the mode, set, toggle, and display com­
mands).

February,1990
Revision C

1

telnet(1C) telnet(1C)

2

open host [port]
Open a connection to the named Iwst. If no port number is
specified, tel net will attempt to contact a TELNET server
at the default port. The host specification may be either a
host name (see hosts(4» or an Internet address specified in
the "dot notation" (see inet(3N).

close
Close a lELNET session and return to command mode.

quit
Close any open lELNET session and exit telnet. An end
of file (in command mode) will also close a session and exit.

z Suspend telnet. This command only works when the user
is using the csh(1).

mode type
type is either line (for "line by line" mode) or character (for
"character at a time" mode). The remote host is asked for
permission to go into the requested mode. If the remote host
is capable of entering that mode, the requested mode will be
entered.

status
Show the current status of telnet. This includes the peer
one is connected to, as well as the current mode.

display [argument ...]
Displays all, or some, of the set and toggle values (see
below).

? [command]
Get help. With no arguments, telnet prints a help sum­
mary. If a command is specified, telnet will print the help
information for just that command.

send arguments
Sends one or more special character sequences to the remote
host. The following are the arguments which may be
specified (more than one argument may be specified at a
time):

escape
Sends the current telnet escape character (initially
" ...] ").

February, 1990
RevisionC

telnet(lC) telnet(lC)

synch
Sends the TELNET SYNCH sequence. This sequence
causes the remote system to discard all previously typed
(but not yet read) input This sequence is sent as TCP
urgent data (and may not work if the remote system is a
4.2 BSD system; if it doesn't work, a lowercase "r"
may be echoed on the terminal).

brk Sends the TELNET BRK (Break) sequence, which may
have significance to the remote system.

ip Sends the TELNET IP (Interrupt Process) sequence,
which should cause the remote system to abort the
currently running process.

ao Sends the TELNET AO (Abort Output) sequence, which
should cause the remote system to flush all output from
the remote system to the user's terminal.

ayt Sends the TELNET AYT (Are You There) sequence, to
which the remote system mayor may not choose to
respond.

ec Sends the TELNET EC (Erase Character) sequence,
which should cause the remote system to erase the last
character entered.

el Sends the TELNET EL (Erase Line) sequence, which
should cause the remote system to erase the line current­
ly being entered.

ga Sends the TELNET GA (Go Ahead) sequence, which
likely has no significance to the remote system.

nop Sends the TELNET NOP (No OPeration) sequence.

? Prints out help information for the send command.

set argument value
Set anyone of a number of telnet variables to a specific
value. The special value "off' turns off the function associ­
ated with the variable. The values of variables may be inter­
rogated with the display command. The variables which
may be specified are:

echo
This is the value (initially "A E' ') which, when in "line
by line" mode, toggles between doing local echoing of
entered characters (for normal processing), and

February, 1990 3
Revision C

telnet(lC) telnet(lC)

4

suppressing echoing of entered characters (for entering,
say, a password).

escape
This is the telnet escape character (initially " ... [")
which causes entry into telnet command mode (when
connected to a remote system).

interrupt
If telnet is in localchars mode (see toggle local­
chars below) and the interrupt character is typed, a
TELNET IP sequence (see send ip above) is sent to the
remote host. The initial value for the interrupt character
is taken to be the terminal's interrupt character.

quit If telnet is in localchars mode (see toggle local­
chars below) and the quit character is typed, a TELNET
BRK sequence (see send brk above) is sent to the re­
mote host The initial value for the quit character is tak­
en to be the terminal's quit character.

jlushoutput
If telnet is in localchars mode (see toggle local­
chars below) and the jlushoutput character is typed, a
TELNET AO sequence (see send ao above) is sent to
the remote host. The initial value for the flush character
is taken to be the terminal's flush character.

erase
If telnet is in loca/chars mode (see toggle loca/­
chars below), and if telnet is operating in "character
at a time" mode, then when this character is typed, a
TELNET EC sequence (see send ec above) is sent to
the remote system. The initial value for the erase char­
acter is taken to be the terminal's erase character.

kill If telnet is in loca/chars mode (see toggle loca/­
chars below), and if te/net is operating in "character at
a time" mode, then when this character is typed, a TEL­
NET EL sequence (see send e/ above) is sent to the re­
mote system. The initial value for the kill character is
taken to be the terminal's kill character.

eo! If telnet is operating in "line by line" mode, entering
this character as the first character on a line will cause
this character to be sent to the remote system. The ini-

February, 1990
RevisionC

telnet(1C) telnet(lC)

tial value of the EOF character is taken to be the
terminal's EOF character.

toggle arguments ...
Toggle (between lRUE and FALSE) various flags that con­
trol how tel net responds to events. More than one argu­
ment may be specified. The state of these flags may be inter­
rogated with the display command. Valid arguments are:

loealehars
If this is TRUE, then the flush, interrupt, quit, erase, and
kill characters (see set above) are recognized locally,
and transformed into (hopefully) appropriate TELNET
control sequences (respectively ao, ip, brk, ee, and el;
see send above). The initial value for this toggle is
TRUE in "line by line" mode, and FALSE in "charac­
ter at a time" mode.

autofiush
If autofiush and local chars are both TRUE, then when
the ao, interrupt or quit characters are recognized (and
transformed into TELNET sequences; see set above
for details), telnet refuses to display any data on the
user's terminal until the remote system acknowledges
(via a TELNET Timing Mark option) that it has pro­
cessed those TELNET sequences. The initial value for
this toggle is TRUE if the terminal user had not done an
stty noflsh, otherwise FALSE (see stty (1» •

autosyneh
If autosyneh and loealehars are both TRUE, then when
either the interrupt or quit characters is typed (see set
above for descriptions of the interrupt and quit charac­
ters), the resulting TELNET sequence sent is followed
by the TELNET SYNCH sequence. This procedure
should cause the remote system to begin throwing away
all previously typed input until both of the TELNET se­
quences have been read and acted upon. The initial
value of this toggle is FALSE.

ermod
Toggle carriage return mode. When this mode is en­
abled, most carriage return characters received from the
remote host will be mapped into a carriage return fol­
lowed by a linefeed. This mode does not affect those

February,1990
Revision C

5

telnet(IC) telnet(IC)

characters typed by the user, only those received from
the remote host. This mode is not very useful unless the
remote host only sends carriage return, but never
linefeed. The initial value for this toggle is FALSE.

debug
Toggles socket level debugging (useful only to the su­
peruser). The initial value for this toggle is FALSE.

options
Toggles the display of some internal telnet protocol
processing (having to do with TELNET options). The
initial value for this toggle is FALSE.

netdata
Toggles the display of all network data (in hexadecimal
format). The initial value for this toggle is FALSE.

? Displays the legal toggle commands.

FILES
/usr/bin/telnet

SEE ALSO
cu(I), ftp(IN), rlogin(lN), tip(IC), uucp(IC),
telnetd(1M).

BUGS

6

There is no adequate way for dealing with flow control.

On some remote systems, echo has to be turned off manually
when in "line by line" mode.

There is enough settable state to justify a . telnetrc file.

No capability for a . telnetrc file is provided.

In "line by line" mode, the terminal's EOF character is only
recognized (and sent to the remote system) when it is the first
character on a line.

February, 1990
RevisionC

test(1) test(1)

NAME
test - condition evaluation command

SYNOPSIS
test [expr]

DESCRIPTION
test evaluates the expression expr and, if its value is true, re­
turns a zero (true) exit status; otherwise, a nonzero (false) exit
status is returned. t est also returns a nonzero exit status if there
are no arguments. The superuser is always granted execute per­
mission even though execute permission is meaningful only for
directories and regular files and exec requires that at least one
execute mode bit be set for a regular file to be executable. The
following primitives are used to construct expr.

-r file True if file exists and is readable.

-w file

-x file

-ffile

-dfile

-cfile

-bfile

-pfile

-ufile

-gfile

-kfile

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character device file.

True if file exists and is a block device file.

True if file exists and is a named pipe (FIFO).

True iffile exists and its set-user-ID bit is set

True iffile exists and its set-group-ID bit is set.

True if file exists and its sticky bit is set

-s file True if file exists and has a size greater than zero.

-t [Ii/des] True if the open file whose file descriptor number is
fildes (1 by default) is associated with a terminal dev­
ice.

-z sl True if the length of string sl is zero.

-n sl True if the length of string sl is nonzero.

sl = s2 True if strings sl and s2 are identical.

sl ! = s2 True if strings sl and s2 are not identical.

sl True if sl is not the null string.

February, 1990
Revision C

1

test(l) test(l)

nl -eq n2
True if the integers nl and n2 are algebraically equal.
Any of the comparisons -ne, -gt, -ge, -It, and
-Ie may be used in place of -eq.

These primaries may be combined with the following operators:

-a

-0

(expr)

Unary negation operator.

Binary AND operator.

Binary OR operator (-a has higher precedence than
-0).

Parentheses for grouping.

Notice that all the operators and flags are separate arguments to
test. Notice also that parentheses are meaningful to the shell
and, therefore, must be escaped.

EXAMPLES
test is typically used in shell scripts (sh(I)), as in the following
example, which prints the message "foo is a directory"
if it is found to be one when test is run.

if test -d foo
then

echo "foo is a directory"
fi

SEE ALSO

2

find(I), ksh(I), sh(I).
"Bourne Shell Reference" and "Korn Shell Reference" in A/UX
User Interface.

February, 1990
Revision C

TextEditor(l) TextEditor(l)

NAME
TextEdi tor - mouse-based text editor

SYNOPSIS
TextEdi tor [filename]

DESCRIPTION
TextEdi tor is a mouse-based editor for use with both Macin­
tosh® and NUX® files of type TEXT. It runs with NUX 2.0 and
later systems. TextEdi tor provides an alternative to the vi
and ed text editors for those who prefer to work with the mouse
and pull-down menus instead of with keyboard commands.

You can invoke TextEditor by double-clicking its icon, by
double-clicking the icon of a Macintosh or NUX text file while
TextEdi tor is the default editor, or by entering launch
TextEdi tor in the NUX command line. For information about
making TextEdi tor the default editor, see AIUX Essentials.

If you double-click a file icon or specify a filename when invoking
TextEdi tor from the command line, the text of that file appears
in the first window displayed; otherwise, the first window is emp­
ty. TextEdi tor lets you open several windows at once, each
displaying text from a different file; however, you can work in
only one window at a time. The window in which you are work­
ing is called the active window.

You can scroll and page the text in the active window by using the
scroll bar that runs along its right side, as described in AIUX
Essentials.

Files created or touched by TextEdi tor are saved as text-only
files of type TEXT. They may contain tab and newline characters
but no other formatting information. This file structure is compa­
tible with other applications that create text-only files; for exam­
ple, TextEdi tor can process MacWrite® files saved with the
Text Only option.

The tab setting, font setting, selection, window settings, auto­
indent state, invisible character state, and markers applicable to a
file are saved with the file in its resource fork. This resource fork
appears as a file named %filename in the NUX directory that con­
tains the primary file. You can tell TextEdi tor not to save this
resource file by clicking the "Save Text Only" radio button in the
dialog that appears when you select any of the following items
from the File menu: New, Close, Save as ... , and Save a Copy.

February, 1990
Revision C

1

TextEdi tor(1) TextEditor(l)

MOUSE-BASED EDITING
In TextEditor, the procedure for inserting text entered from
the keyboard is simple. Move the mouse so that you position the
I-beam pointer on the screen at any place in the text inside the text
window and then click (press and release) the mouse button.
When you click, a blinking vertical bar appears at the pointer posi­
tion to mark the current text insertion point. Characters you enter
from the keyboard always appear at this insertion point. At any
time you can move the pointer to a new place in the text and click
to establish a new insertion point.

Caution: Except for tab and newline, TextEditor ignores
zero-width (control) characters generated by the keyboard. If you
need to enter such a character into a document, generate it in the
Key Caps desk accessory (accessible under the Apple® menu)
and use Copy and Paste menu items in the Edit menu to transfer it
to the document.

The general procedure for using TextEdi tor to edit or other­
wise modify existing text comprises two steps: first you select the
text to be changed and then you choose the operation you want to
perform on the selection.

If you select text and immediately enter one or more characters
from the keyboard, instead of choosing a menu item, TextEdi­
tor deletes the selected text and inserts the text entered from the
keyboard in its place.

In many cases, TextEdi tor lets you undo an operation if you
make a mistake. Just choose Undo from the Edit menu immedi­
ately after the faulty operation.

The next section "Text Selection" tells you how to select the text
to be edited; "Menu Commands" lists the operations you can per­
form.

TEXT SELECTION

2

There are several ways you can select a section of existing text for
a TextEditor editing operation.

Double-clicking
When you position the pointer on a word and press the mouse but­
ton twice in rapid succession, TextEdi tor selects that word.
This is called double-clicking. In this selection mode, TextEdi­
tor recognizes two character domains. One domain contains the
uppercase and lowercase letters, the ten numerals, and the under-

February, 1990
RevisionC

TextEditor(l) TextEditor(l)

score character; the other domain contains all other characters, in­
cluding punctuation, space, and newline. If you double-click a
character from the letter domain, TextEditor selects text in
both directions from that character to the first character belonging
to the punctuation domain. If you double-click on a punctuation
character, except for one of the enclosing characters described
below, it selects just that character.

Triple-Clicking
When you place the cursor anywhere within a line of text and
click the mouse button three times in rapid succession, TextEd­
ito r selects the entire line. This is called "triple-clicking."

Dragging
When you move the pointer over text from one place to another
while pressing and holding down the mouse button, TextEdi­
tor selects all the text the pointer passes over until you release
the mouse button. This is called dragging. By dragging, you can
select any amount of text from a single character to an entire do­
cument. When you attempt to move the pointer above or below
the text currently showing, TextEdi tor automatically scrolls
the window to show more text.

Shift Selection
When you move the pointer to a place other than the current inser­
tion point and then click while holding down SHIFT, TextEdi­
tor selects all the text between the insertion point and the pointer
position, even when they are on different pages of the document
and the insertion point is not showing.

Marker Selection
"Mark Menu" in the later section, "Menu Commands" describes
how you can create names for selections of text. To select a piece
of text you have previously named, you just choose its name from
the Mark menu.

Enclosed Text Selection
When you double-click one of the following pairs of polarized en­
closing characters, TextEdi tor selects all text between it and
the matching character. These characters are:

() [] { }

This method of selecting text works both backward and forward.
For example, if you click a right bracket, TextEdi tor searches
backward for the first preceding left bracket. It also correctly

February, 1990
Revision C

3

TextEditor(l) TextEdi tor(1)

parses nested structures that use the same enclosing characters.

When you double-click the first occurrence of one of the follow­
ing pairs of nonpolarized enclosing characters, TextEdi tor
selects all text between it and the next occurrence of the same
character forward in the text. These characters are:

" "
, , , , / / \ \

When making a selection from both polarized and nonpolarized
enclosing characters, TextEdi tor ignores all characters except
the correct match and searches to the beginning or end of the do­
cument. The resulting selection does not include the enclosing
characters themselves. If TextEdi tor does not find a match, it
selects only the character originally clicked.

MENU ITEMS

4

TextEdi tor displays menus titled File, Edit, Find, Mark, and
Window in the menu bar at the top of the screen, plus the Apple
menu at the far left. To choose a menu item, position the pointer
on a menu title, press the mouse button, and move the mouse
downward while holding down the mouse button. Release the
button when the pointer has highlighted the desired item. Menu
actions operate only on the active (frontmost or topmost) window.

Many menu actions can be invoked from the keyboard by holding
down COMMAND (not CONTROL) and typing a character. The
character required is shown beside the Command-key symbol in
the menu display. Such Command-key equivalents may be en­
tered as lowercase; you don't need to hold down SHIff as well.

The following sections describe the actions performed by the vari­
ous TextEditor menu items.

Apple Menu
At the far left of the menu bar, the Apple symbol is the title of a
menu that contains the About TextEditor menu item. Choosing
that menu item displays a dialog box that gives version informa­
tion.

File Menu
The menu items in the File menu let you create, retrieve, and save
files, print text, and quit TextEdi tor. The File Menu contains
the following menu items:

New... Create a new empty file of type TEXT. This
menu item first displays a dialog box that lets

February, 1990
Revision C

TextEdi tor{ 1)

Open ...

Close

February, 1990
Revision C

TextEditor(l)

you enter a filename and select a directory to
contain the document. When you click the
Drive button in this dialog box, TextEdi tor
searches for a different hard disk or floppy disk.
When you click the New button, it creates the
file and opens it in a new, active TextEdi tor
window. The Command-key equivalent for the
New menu item is COMMAND-N.

The New... dialog also contains radio buttons
that let you specify whether the resulting file
will be saved with its formatting information or
as text only.

Open an existing text file from disk. This menu
action first displays a hierarchical list of all files
of type TEXT that are available in your im­
mediate system. To open a file, double-click its
name, or select its name and then click the
Open button. When you open a file for the first
time, TextEdi tor places the insertion point
at the beginning of the text. When you open
the file subsequently, it appears in the last state
in which TextEdi tor saved it; the previous
selection or insertion point is preserved (if you
have saved formatting information) unless the
file has been modified by other software. To
open a non modifiable copy of a file, click the
Read-Only box. If the file you specify is al­
ready open in TextEditor, its window is
made active. The Command-key equivalent for
the Open menu item is COMMAND-O.

Close the active window and remove it from
view. You can recall the window later by using
the Window menu. This menu action does not
save the window contents to disk. The
Command-key equivalent for the Close menu
item is COMMAND-W.

If you have not previously saved the file, this
menu action displays a dialog that lets you
specify whether the file being closed will be
saved, and if it is saved whether it is with for­
matting information or as text only.

5

TextEditor(l) TextEditor(l)

Save Save the contents of the active window to disk
in the file that was originally opened, without
closing the window. This menu item is grayed
if the contents of the file have not been changed
since the last Save action. The Command-key
equivalent for the Save menu item is
COMMAND-S.

Save As... Save the contents of the active window to disk
into a different file than the one originally
opened, and start to edit the new file. The ori­
ginal file is closed with its original name but
without any new changes being saved to it.
This menu action displays a dialog box that lets
you enter the new filename and specify its
directory location, as well as radio buttons that
let you specify whether or not formatting infor­
mation is saved. The active window then
shows the name and contents of the new file
and subsequent Save actions save the contents
of the window to it

Save a Copy... Act the same as Save As, but continue editing
the original file under the original name.

Revert to Saved Discard all changes to the contents of the active
window since it was last saved. This menu
item is grayed if the contents of the file have
not been changed since the last Save action.

Page Setup Display a dialog box that lets you set the paper
size, orientation, and reduction or enlargement
for subsequent printing actions.

Print Window Print text from the active window. If part of the
text is currently selected, TextEdi tor prints
only the selection; otherwise, it prints the entire
document in the window. Use the Chooser
desk accessory, available in the Apple menu, to
specify which printer to use. Use the Page Set­
up menu item, just described, to specify paper
size, orientation, and scale.

Quit Exit TextEditor and return to the Finder. If
there are unsaved changes to any files, Text­
Editor gives you a chance to save them. The

6 February, 1990
RevisionC

TextEdi tor(1)

Edit Menu

TextEditor(l)

Command-key equivalent for the Quit menu
item is COMMAND-Q.

The items in the Edit menu help you move text around and per­
form certain global fonnatting actions.

Undo

Cut

Copy

Paste

Clear

Select All

Reverse the most recent text change. If you choose
Undo a second time, the change is reinstated. This
menu action does not affect changes to the resource
fork, such as font or tab settings. The Command­
key equivalent for the Undo menu item is
COMMAND-Z.

Copy the currently selected text in the active win­
dow to the Clipboard and then delete it from the
window. The Command-key equivalent for the Cut
menu item is COMMAND-X.

Copy the currently selected text in the active win­
dow to the Clipboard without deleting it from the
window. The Command-key equivalent for the
Copy menu item is COMMAND-C.

Replace the currently selected text in the active
window with the contents of the Clipboard. If
there is no current selection, Paste inserts the con­
tents of the clipboard at the current insertion point.
The Command-key equivalent for the Paste menu
item is COMMAND-V.

Delete the currently selected text from the active
window. The key equivalent for the Clear menu
item is DELETE.

Select the entire document that is in the active win­
dow. The Command-key equivalent for the Select
All menu item is COMMAND-A.

Show Clipboard
Display a new, active TextEditor window that
displays the contents of the Clipboard, if any.

Format... Display a dialog box that lets you set typography
and indentation for the entire document that is in
the active window.

February, 1990
Revision C

7

TextEditor(l) TextEditor(l)

Scrolling list (fields) in the Format dialog box let
you select a type font and size for the active win­
dow by clicking items in the lists.

The Auto Indent check box in the Format dialog
box toggles auto-indenting on and off, with the X­
mark indicating it is on. When auto-indenting is
on, pressing RETURN aligns text to the left margin
of the previous line. You can override auto­
indenting for any single line, aligning it to the far
left margin, by holding down OPTION while you
press RETURN.

The Show Invisibles check box in the Format dia­
log box toggles invisible character display on and
off, with the X-mark indicating it is on. When it is
on, all characters in the document are displayed, in­
cluding those normally invisible. Tabs are shown
as triangles, spaces as diamonds, new lines as logi­
cal negation characters (rotated L's), and all other
normally invisible characters as upside-down ques­
tion marks.

The Tabs text box in the Format dialog box lets you
enter the number of spaces signified by each tab
character in the active window.

Align Align the left margin of all the currently selected
text in the active window to the top line of the
selection.

Shift Left Move the currently selected text in the active win­
dow one tab distance to the left, preserving indenta­
tion within the selection. The Command-key
equivalent for the Shift Left menu item is
COMMAND-{ . If you also hold down SHIFT, the
movement becomes one space instead of one tab.

Shift Right Perform the same action as Shift Left, but move the
selection to the right. The Command-key
equivalent for the Shift Right menu item is
COMMAND-}.

8 February, 1990
Revision C

TextEditor(l) TextEditor(l)

Find Menu
The menu items in the Find menu help you find and replace text in
the active window.

All search actions start by displaying a dialog box that lets you
specify the following options by clicking an option so the check
box is checked:

Literal Find the exact string you entered, wherever
it may appear, even if it is part of another
string.

Entire Word Find the string you entered only if it consti­
tutes an entire word. The determination of
word boundaries is the same as with
double-clicking, described earlier in "Text
Selection. " The Entire Word and Literal
options are mutually exclusive.

Case Sensitive Find the string you entered only if the up­
percase and lowercase status of all letters in
the found string is the same.

Search Backward Search from the current selection or inser­
tion point toward the beginning of the docu­
ment. You can temporarily reverse the
direction of searching, either from forward
to backward or from backward to forward,
by holding down SmFf when you start a
search operation.

Wrap-around Search Search forward to the end of the document,
then start searching again from the begin­
ning to the current selection or insertion
point. If Search Backwards is also selected,
Wrap-around Search does the same in the
reverse direction.

The default values for searching are Literal on, Entire Word off,
Case Sensitive off, Search Backwards off, and Wrap-around
Search off. Whenever a search fails, TextEdi tor tells you by
sounding a beep.

The Find menu contains the following menu items:

Find... Find the next occurrence of the string you
specify in the text box. TextEdi tor
scrolls the active window to that part of the

February, 1990 9
Revision C

TextEdi tor(l) TextEditor(l)

10

Find Same

Find Selection

Display Selection

Replace ...

Replace Same

Mark Menu

document and selects the text it has found.
The Command-key equivalent for the Find
menu item is COMMAND-F.

Repeat the most recent Find operation. The
Command-key equivalent for the Find
Same menu item is COMMAND-G.

Find the next occurrence of the currently
selected text. The Command-key
equivalent for the Find Selection menu item
is COMMAND-H.

Scroll the active window to show the
currently selected text.

Find the next occurrence of the string you
specify in a text box and replace it with
another string that you also specify. The
Command-key equivalent for the Replace
menu item is COMMAND-R.

Repeat the latest Replace operation. The
Command-key equivalent for the Replace
Same menu item is COMMAND-T.

The menu items in the Mark menu help you navigate long docu­
ments. They let you associate labels with pieces of text so you
can find them easily later. They also make it easy to select large
pieces of text, as explained earlier in "Text Selection."

The upper part of the Mark menu, above the horizontal line, con­
tains the menu items Mark and Unmark; the lower part contains a
list of all mark labels you have created for the currently active
window. The Mark and Unmark menu items do the following:

Mark... Display a dialog box that lets you attach a label to a
text position. If you previously selected a piece of
text, the label applies to the whole selection; if not, it
applies to the current position of the insertion point.
If you try to create a label using a name that is already
taken, TextEdi tor displays a dialog box that lets
you either replace the old marker or choose a new
name. The Command-key equivalent for the Mark
menu item is COMMAND-M.

February, 1990
RevisionC

TextEditor(1) TextEdi tor(1)

Unmark... Display a dialog box that lets you remove unwanted
markers. The Unmark dialog box shows you a scrol­
ling list of all current markers. You can select one or
more of them, by clicking or dragging, and then click
the Delete button. If you decide you don't want to
delete a marker, click the Cancel button.

When you choose one of the label items in the lower part of the
menu, TextEdi tor scrolls the active window to the marked text
and either selects it (if you originally marked a selection) or places
the insertion point at the marked position.

Window Menu
The menu items in the Window menu help you arrange and recall
TextEditor windows. The upper part of the Window menu,
above the horizontal line, contains the menu items Tile Windows
and Stack Windows; the lower part contains a list of the full path­
names of all windows currently displayed in TextEdi tor.

The Tile Windows and Stack Windows menu items, in the top part
of the Window menu, do the following:

Tile Windows Arrange the currently open windows vertically,
so that at least part of the contents of each one
is visible.

Stack Windows Arrange the currently open windows in a diago­
nally staggered overlapping pattern, with the
currently active window in front. The active
window is the only one whose contents are visi­
ble.

When you choose one of the items in the lower window list,
TextEdi tor makes it the active window. The names of
currently displayed windows are listed in the order they were ori­
ginally displayed. In addition, they are marked as follows:

Check mark The currently active window

Round bullet The window that was active just before the current­
ly active window, and hence is second to the front

Underline

February, 1990
Revision C

Any window containing changes that have not yet
been saved

11

TextEdi tor(1)

FILES
/usr/toolboxbin/TextEditor
/usr/toolboxbin/%TextEditor

SEE ALSO
vi(l), ed(l).

TextEditor(l)

See MPW 3.0 Reference for a description of a similarly construct­
ed mouse-based text editor.

12 February, 1990
RevisionC

tftp(lC) tftp(lC)

NAME
t f t P - trivial file transfer program

SYNOPSIS
tftp [host]

DESCRIPTION
tftp is the user interface to the Internet TFfP (Trivial File
Transfer Protocol), which allows users to transfer files to and from
a remote machine. The remote host may be specified on the com­
mand line, in which case tftp uses host as the default host for
future transfers (see the connect command below).

COMMANDS
Once tftp is running, it issues the prompt tftp> and recog­
nizes the following commands:

connect host-name [port]
Set the host (and optionally port) for transfers. Note that the
TFIP protocol, unlike the FfP protocol, does not maintain
connections betweeen transfers; thus, the connect com­
mand does not actually create a connection, but merely
remembers what host is to be used for transfers. You do not
have to use the connect command; the remote host can be
specified as part of the get or put commands.

mode transfer-mode
Set the mode for transfers; transfer-mode may be one of
ascii or binary. The default is ascii.

put file
pu t localfile remotefile
pu t filel file2 ... fileN remote-directory

Put a file or set of files to the specified remote file or directo­
ry. The destination can be in one of two fonus: a filename
on the remote host, if the host has already been specified, or a
string of the form host :filename to specify both a host and
filename at the same time. If the latter form is used, the host­
name specified becomes the default for future transfers. If
the remote-directory form is used, the remote host is assumed
to be a UNIX machine.

get filename
get remote name localname
get filel file2 ... fileN

Get a file or set of files from the specified sources. source

February, 1990
Revision C

1

tftp(lC) tftp(lC)

can be in one of two forms: a filename on the remote host, if
the host has already been specified, or a string of the form to
specify both a host and filename at the same time. If the
latter form is used, the last hostname specified becomes the
default for future transfers.

quit
Exit tftp. An end of file also exits.

verbose
Toggle verbose mode.

trace
Toggle packet tracing.

status
Show current status.

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

time ou t total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii
Shorthand for "mode ascii"

binary
Shorthand for "mode binary"

? [command-name ...]
Print help information.

FILES
/usr/bin/tftp

BUGS

2

Because there is no user-login or validation within the TFfP pro­
tocol, the remote site will probably have some sort of file-access
restrictions in place. The exact methods are specific to each site
and therefore difficult to document here.

February, 1990
RevisionC

time(l) time(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
time executes the command; afterward, time prints the elapsed
time during the command, the time spent in the system, and the
time spent in execution of the command. Times are reported in
seconds.

The times are printed on the standard error output.

EXAMPLES
time nroff -mm filea

will, in sh, perform the formatting and report the time at the end
of the file, e.g.:

real 22.0
user 8.6
sys 6.4

In csh, where time is a built-in command, the time report might
be:

8.9u 7.0s 0:29 54%

which reports, respectively, the user time, system time, real time,
and percentage of real time that the CPU was active, which is the
sum of the user and system times divided by the real elapsed time.

FILES
/bin/time

SEE ALSO
csh(l), timex(1), times(2).

February, 1990
Revision C

1

timex(l) timex(l)

NAME
timex - time a command; report process data and system
activity

SYNOPSIS
timex [-0] [-p[fhkmrt]] [-s] command

DESCRIPTION
timex sends the given command to the shell for execution;
timex then reports (in seconds) the elapsed time, user time, and
system time spent in execution. Optionally, timex may list or
summarize process accounting data for the command and all its
children, or report total system activity during the execution inter­
val.

The output of timex is written on the standard error output.

FLAG OPTIONS
The flag options interpreted by timex are:

-p List process accounting records for command and all its chil­
dren. Suboptions f, h, k, m, r, and t modify the data items
reported, as defined in acctcom(1M). timex always re­
ports the number of blocks read or written and the number of
characters transferred.

-0 Report the total number of blocks read or written and total
characters transferred by command and all its children.

-s Report total system activity (not just that due to command)
that occurred during the execution interval of command.
timex reports all the data items listed in sar(l).

EXAMPLES
timex ps -el

runs the ps command (with the correct flag options), then pro­
duces statistics concerning the command and system activity dur­
ing the command to the standard error output.

FILES
/usr/bin/timex
/usr/lib/sa/timex

SEE ALSO
acctcom(lM), sar(l), time(l).

1 February, 1990
Revision C

timex{l) timex(1)

WARNINGS
Process records associated with command are selected from the
accounting file / u s r / adm/ pa cc t by inference, since process
genealogy is not available. Background processes having the
same user ID, terminal ID, and execution time window will be in­
cluded spuriously.

February, 1990
Revision C

2

tip(lC) tip(lC)

NAME
tip - connect to a remote system

SYNOPSIS
tip [-v] [-speed] system-name

tip [-v] [-speed] phone-number

DESCRIPTION

1

tip establishes a full-duplex connection to another machine, giv­
ing the appearance of being logged in directly on the remote CPU.
You must have a login (or equivalent) on the machine to which
you wish to connect.

Typed characters are normally transmitted directly to the remote
machine (which does the echoing as well). A tilde (-) appearing
as the first character of a line is an escape signal; the following are
recognized.

-c[name]

- I

-p from [to]

-t from [to]

Drop the connection and exit (you may still be
logged in on the remote machine). You may
also use -CONTROL-D as a synonym for - ..

Change directory to name (no argument implies
change to your home directory).

Escape to a shell (exiting the shell will return
you to tip).

Copy file from local to remote. tip prompts
for the name of a local file to transmit.

Copy file from remote to local. tip prompts
first for the name of the file to be sent, then for
a command to be executed on the remote
machine.

Send a file to a remote UNIX host. The put
command causes the remote UNIX system to
run the command string cat>' to' , while tip
sends it the from file. If the to file isn't
specified, the from filename is used. This com­
mand is actually a UNIX -specific version of the
-> command.

Take a file from a remote UNIX host. As in the
put command, the to file defaults to the from
filename if the to file isn't specified. The re­
mote host executes the command string

February, 1990
RevisionC

tip(lC)

s

-CONfROL-Z

tip(lC)

cat ' from' ; echo CON1ROL-A

to send the file to tip.

Pipe the output from a remote command to a lo­
cal UNIX process. tip will prompt the user
for both the remote command and the local
command. The command string sent to the lo­
cal UNIX system is processed by the shell.
Note that the eofread variable should be set
to the appropriate value before this escape is
used.

Send an interrupt signal to the remote system.
For systems that do not support the necessary
ioetl call, the break is simulated by a se­
quence of line speed changes and delete charac­
ters.

Set a variable (see the discussion later in this
section).

Stop tip (available only with job control).

Get a summary of the tilde escapes

tip uses the file / ete/ remote to find how to reach a particular
system and to find out how it should operate while talking to the
system. Each system has a default baud with which to establish a
connection. If this value is not suitable, the baud to be used may
be specified on the command line, for example, tip - 300 mds.
If the baud rate is specified as 300 baud but no system name is
supplied, then tip assumes that a host with the name tip300
exists in the fete/remote file. Similarly, if no speed is
specified but a telephone number is provided, then tip looks for a
host with the name tipO. Refer to remote(4) for a full descrip­
tion.

When tip establishes a connection, it sends out a connection
message to the remote system; the default value, if any , is defined
in fete/remote.

tip also uses fete/dialup to determine which modem escape
sequences to use; refer to remote(4) and dial up(4) for details.

When tip prompts for an argument (for example, during setup of
a file transfer), the line typed may be edited with the standard
erase and kill characters. A null line in response to a prompt or an

February, 1990
RevisionC

2

tip(IC) tip(IC)

interrupt will abort the dialogue and return to the remote machine.

tip guards against multiple users connecting to a remote system
by opening modems and terminal lines with exclusive access, and
by honoring the locking protocol used by uucp(IC).

During file transfers, tip provides a running count of the number
of lines transferred. When using the - > and - < commands, the
eofread and eofwri te variables are used to recognize end­
of-file when reading, and specify end-of-file when writing (see
"Variables" later in this section). File transfers normally depend
on ixon/ixoff mode for flow control (see stty(I». If the re­
mote system does not support ixon/ixoff mode, echocheck
may be set to indicate that tip should synchronize with the re­
mote system on the echo of each transmitted character.

When tip must dial a telephone number to connect to a system, it
will print various messages indicating its actions. tip supports
the DEC DN-ll and Racal-Vadic 831 auto-call-units; the DEC
DF02 and DF03, Ventel 212+, Racal-Vadic 3451, Bizcomp 1031
and 1032 integral call unit/modems, and Apple modems.

VARIABLES

3

tip maintains a set of variables that control its operation. Some
of these variables are read-only to normal users (root is allowed
to change anything of interest). Variables may be displayed and
set through the s escape. The syntax for variables is patterned
after vi(1) and mailx(l). Supplying all as an argument to the
set command displays all variables readable by the user. Alterna­
tively, the user may request display of a particular variable by at­
taching a ? to the end. For example, escape? displays the
current escape character.

Variables are numeric, string, character, or boolean values.
Boolean variables are set merely by specifying their names; they
may be reset by prefixing a ! to the name. Other variable types
are set by concatenating an = and the value. The entire assign­
ment must not have any blanks in it. A single set command may
be used to interrogate, as well as set, a number of variables. Vari­
ables may be initialized at run time by placing set commands
(without the - s prefix in the file . tiprc in the user's home
directory). The -v flag option causes tip to display the sets as
they are made. Certain common variables have abbreviations.
Following is a list of common variables, with a description of each
one, an abbreviation, and a default value (when applicable). The

February, 1990
Revision C

tip(lC) tip(lC)

data type of each variable is listed in parentheses.

baudrate (num) The baud at which the connection was es­
tablished; abbreviated ba.

beautify (boo!) Discard unprintable characters when a
session is being scripted; abbreviated be.

dial timeout (num) When dialing a telephone number, the
time (in seconds) needed for a connection to be
established; abbreviated di a 1.

echocheck (bool) Synchronize with the remote host during
file transfer by waiting for the echo of the last
character to be transmitted; default is false.

eofcmd (str) The string sent to indicate the end of re­
mote command output (usually a prompt string)
during a - I pipe.

eofread (str) The set of characters which signify an
end-of-transmission during a - < file transfer
command; abbreviated eofr.

eofwri te (str) The string sent to indicate end-of­
transmission during a - > file transfer command;
abbreviated eofw.

eol (str) The set of characters which indicate an
end-of-line. tip will recognize escape charac­
ters only after an end-of-line.

escape (char) The command prefix (escape) character;
abbreviated es; default value is tilde (-).

exceptions (str) The set of characters which should not be
discarded due to the beautification switch; ab­
breviated ex; default value is \ t \ n \ f \ b.

force (char) The character used to force literal data
transmission; abbreviated fa; default value is
CONTROL-Po

framesize (num) The amount of data (in bytes) to buffer
between file system writes when receiving files;
abbreviated fro

halfduplex (bool) Connection is half-duplex; abbreviated
hdx. Default is false.

February, 1990 4
Revision C

tip(IC) tip(IC)

host (str) The name of the host connected to; abbre­
viated ho.

localecho (boof) Echo input locally; abbreviated leo De­
fault is false.

log (str) The name of the file in which to log tran­
saction activity reports. default value is
/usr/adm/aculog.

prompt (char) The character which indicates an end-of­
line on the remote host; abbreviated pr; default
value is \ n. This value is used to synchronize
during data transfers. The count of lines
transferred during a file transfer command is
based on receipt of this character.

raise (boof) Uppercase mapping mode; abbreviated
ra; default value is false. When this mode is
enabled, all lowercase letters will be mapped to
uppercase by tip for transmission to the remote
machine.

raisechar (char) The input character used to toggle upper­
case mapping mode; abbreviated rc; default
value is CONTROL-@.

record (str) The name of the file in which a session
script is recorded; abbreviated rec; default
value is tip. record.

script (boof) Session scripting mode; abbreviated sc;
default is false. When script is true,
tip will record everything transmitted by the
remote machine in the script record file specified
in record. If the beautify switch is on,
only printable ASCII characters will be included
in the script file (those characters between 040
and 0177). The variable exceptions is used
to indicate characters which are an exception to
the normal beautification rules.

tabexpand (boof) Expand tabs to spaces during file
transfers; abbreviated tab; default value is
false. Each tab is expanded to 8 spaces.

verbose (boof) Verbose mode; abbreviated verb; de­
fault is true. When verbose mode is enabled,

5 February, 1990
RevisionC

tip(lC)

SHELL

HOME

FILES
/usr/ueb/tip
fete/dialup
fete/remote
fete/phones

$ {REMOTE}
${PHONES}

tip(lC)

tip prints messages while dialing, shows the
current number of lines transferred during a file
transfer operation, and more.

(str) The name of the shell to use for the -!
command; default value is /bin/ sh or taken
from the environment

(str) The home directory to use for the - e com­
mand; default value is taken from the environ­
ment

modem escape sequences
global system descriptions
global telephone number data
base

-/.tipre
/usr/spool/uuep/LCK*

private system descriptions
private telephone numbers
initialization file
lock file to avoid conflicts with
uuep

SEE ALSO
eu(lC), ftp(1N), telnet(1N), uuep(1C), dialup(4), re­
mote(4), phones(4).
"Using eu" in A/UX Communications User's Guide.

BUGS
The full set of variables is undocumented and probably should be
pared down.

February, 1990
Revision C

6

touch(l) touch(l)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-a] [-c] [-m] [mmddhhmm [yy]]file ...

DESCRIPTION
touch causes the access and modification times of each argu­
ment to be updated. The file name is created if it does not exist.
If no time is specified (see date(1)) the current time is used. The
-a and -m flag options cause touch to update only the access or
modification times respectively (default is -am). The -c flag op­
tion silently prevents touch from creating the file if it did not
previously exist.

The return code from touch is the number of files for which the
times could not be successfully modified (including files that did
not exist and were not created).

EXAMPLES
touch filea fileb

sets the "date last modified" of the two files to the current date.

FILES
Ibin/touch

SEE ALSO
date(I), utime(2).

BUGS

1

You can't touch a numeric filename without preceding that
filename with the date or with a non-numeric filename on the com­
mand line. For example,

touch 100

will not work, however

touch 0723093584 100

or

touch file1 100

will work.

February, 1990
RevisionC

tp(1) tp(l)

NAME
tp - copy files to or from a tp archive

SYNOPSIS
tp [key] [name ...]

DESCRIPTION
tp saves and restores files within an archive, which frequently
takes the form of magnetic tape media. Its actions are controlled
by the key argument The key is a string of characters containing
at most one function letter and possibly one or more function
modifiers. Other arguments to the command are file or directory
names specifying which files are to be dumped, restored, or listed.
In all cases, appearance of a directory name refers to the files and
(recursively) subdirectories of that directory.

t p is useful for importing tapes made on older systems.

The function portion of the key is specified by one of the follow­
ing letters:

r The named files are written on the tape. If files with
the same names already exist, they are replaced.
"Same" is determined by string comparison, so
. abc can never be the same as I us r I sbe I abc
even if Ius r I sbe is the current directory. If no file
argument is given, . is the default.

u Updates the tape. u is like r, but a file is replaced
only if its modification date is later than the date
stored on the tape; that is to say, if it has changed
since it was dumped. u is the default command if
none is given.

d Deletes the named files from the tape. At least one
name argument must be given. This function is not
permitted on magnetic tapes.

x Extracts the named files from the tape to the file sys­
tem. The owner and mode are restored. If no file ar­
gument is given, the entire contents of the tape are ex­
tracted.

t Lists the names of the specified files. If no file argu­
ment is given, the entire contents of the tape is listed.

February, 1990 1
Revision C

tp(I) tp(I)

The following characters may be used in addition to the letter
which selects the function desired.

m Specifies magnetic tape as opposed to DEC tape.

0, ... , 7
This modifier selects the drive on which the tape is mount­
ed. For DECtape, x is default; for magnetic tape 0 is the
default.

v Normally tp does its work silently. The v (verbose) flag
option causes it to type the name of each file it treats pre­
ceded by the function letter. With the t function, v gives
more information about the tape entries than just the name.

c Means a fresh dump is being created; the tape directory is
cleared before beginning. Usable only with rand u. This
flag option is assumed with magnetic tape since it is impos­
sible to selectively overwrite magnetic tape.

i Errors reading and writing the tape are noted, but no action
is taken. Normally, errors cause a return to the command
level.

f Use the first named file, rather than a tape, as the archive.
This flag option is known to work only with x.

w Causes t p to pause before treating each file, type the indi­
cative letter and the file name (as with v) and await the
user's response. Response y means "yes", so the file is
treated. Null response means "no", and the file does not
take part in whatever is being done. Response x means
"exit"; the tp command terminates immediately. In the x
function, files previously asked about have been extracted
already. With r, u, and d, no change has been made to the
tape.

EXAMPLES
tp x filel

extracts filel from a tp formatted magnetic tape mounted on
drive O.

FILES

2

/bin/tp
/dev/tap?
/dev/mt?

February, 1990
RevisionC

tp(l) tp(l)

SEE ALSO
ar(I), cpio(1), tar(1), dump. bsd(1M).

DIAGNOSTICS
Several; the nonobvious one is Phase error, which means the
file changed after it was selected for dumping but before it was
dumped.

BUGS
A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written
by tp difficult to carry to other machines; tar(1) avoids the
problem.

t p does not copy zero-length files to tape.

February, 1990
Revision C

3

tplot(IG) tplot(IG)

NAME
tplot - interpret plotter instructions for use at a vintage display
device

SYNOPSIS
tplot [-Tterminal [-e raster]]

DESCRIPTION
These commands read plotting instructions (see plot(4» from
the standard input and in general produce, on the standard output,
plotting instructions suitable for a particular terminal. If no termi­
nal is specified, the environment parameter $ TERM (see en­
viron(5» is used. Known terminals are:

300 DASI 300.
300S DASI 300s.
450 DASI 450.
4014 Tektronix 4014.
ver Versatec DI200A. This version of plot places a scan­

converted image in /usr/tmp/raster$$ and sends the
result directly to the plotter device, rather than to the stan­
dard output. The -e flag option causes a previously scan­
converted file raster to be sent to the plotter.

EXAMPLES
tplot -T4014 graph. out

will use the encoded information in graph. out to plot a graph
on a Tektronix 4014-type terminal.

FILES
/bin/tplot
/usr/lib/t300
/usr/lib/t300s
/usr/lib/t450
/usr/lib/t4014
/usr/lib/vplot
/usr/tmp/raster$$

SEE ALSO
plot(3X), plot(4), term(4).

1 February, 1990
Revision C

tput(1) tput(1)

NAME
tput - query terminfo database

SYNOPSIS
tput [-Ttype] capname

DESCRIPTION
tput uses the terminfo(4) database to make terminal­
dependent capabilities and information available to the shell.
tput generates a string if the attribute J(eapability name) is of
type string, or an integer if the attribute is of type integer. If the
attribute is of type boolean, tput simply sets the exit code (0 for
TRUE, 1 for FALSE), and generates no output.

-Ttype indicates the type of terminal. Normally this flag is
unnecessary, as the default is taken from the en­
vironment variable $ TERM.

capname indicates the attribute from the terminfo data­
base. See terminfo(4).

EXAMPLES
tput clear

Echo clear-screen sequence for the current terminal.

tput eols

Print the number of columns for the current terminal.

tput -T450 eols

Print the number of columns for the 450 terminal.

bold='tput smso'

Set shell variable bold to standout mode sequence for current ter­
minal. This might be followed by a prompt:

echo "${bold}Please type in your name: \e"

tput he

Set exit code to indicate if current terminal is a hardcopy terminal.

FILES
/usr/bin/tput

/usr/lib/terminfo/?/*

/usr/inelude/term.h

February, 1990
Revision C

Terminal descriptor files

Definition files

1

tput(l) tput(l)

/usr/include/curses.h

DIAGNOSTICS
t pu t prints error messages and returns the following error codes
on error:

-1

-2

-3

Usage error.

Bad terminal type.

Bad capname.

In addition, if a capname is requested for a terminal that has no
value for that capname (for example, tput -T450 lines),-1
is printed.

SEE ALSO
stty(1), terminfo(4).

2 February, 1990
RevisionC

tr(1) tr(1)

NAME
t r - translate characters

SYNOPSIS
tr [-c] [-d] [-s] [string1 [string2]]

DESCRIPTION
tr copies the standard input to the standard output with substitu­
tion or deletion of selected characters. Input characters found in
string 1 are mapped into the corresponding characters of string2.
For the substitution to work correctly, string2 must have at least as
many characters as string1; excess characters in either string are
ignored by tr. Similarly, when using the -c option, string1 must
have at least as many characters as the complement of string1.
Any combination of the flag options -cds may be used.

-c Complements the set of characters in string1 with respect
to the universe of characters whose ASCII codes are 001
through 377 octal.

-d Deletes all input characters in string1.

-s Squeezes all strings of repeated output characters in
string2 into single characters.

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into the strings.

[a-z] Stands for the string of characters whose ASCII codes run
from character a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is
considered octal; otherwise, n is taken to be decimal. A
zero or missing n is taken to be huge; this facility is useful
for padding string2.

The escape character \ may be used, as in the shell, to remove
special meaning from any character in a string. In addition, \ fol­
lowed by 1, 2, or 3 octal digits stands for the character whose
ASCII code is given by those digits.

EXAMPLES
tr -cs "[A-Z] [a-z]" "[\012*]" <file1 >file2

creates a list of all the words in f i 1 e 1, one per line in f i 1 e 2 ,
where a word is taken to be a maximal string of alphabetics. (The
strings are quoted to protect the special characters from interpreta­
tion by the shell; 012 is the ASCII code for newline.) This was
accomplished via the following translations: t r substitutes the

February, 1990
Revision C

1

tr(l) tr(l)

newline character for all the alphabetics in filel, reconstitutes
the alphabetics with the -c flag option, squeezes the newlines to
one per occurrence with the -s flag option, and directs the output
to file2.

FILES
/usr/bin/tr

SEE ALSO
dd(I), ed(l), sh(I), ascii(5),
"Other Text Processing Tools" in AIUX Text Processing Tools.

BUGS

2

Won't handle ASCII NUL in string1 or string2; always deletes
NUL from input.

February, 1990
Revision C

troff(1) troff(1)

NAME
t ro f f - text formatting and typesetting

SYNOPSIS
troff [-olist] [-nN] [-sN] [-mnarne] [-raN] [-i] [-q] [-a]
[-Tdest] ffile . ..]

DESCRIPTION
troff formats text in the named files for printing on a photo­
typesetter. It is the new "device-independent" version of
troff.

If no file argument is present, the standard input is read. An argu­
ment consisting of a single minus (-) is taken to be a filename
corresponding to the standard input. The flag options, which may
appear in any order so long as they appear before the files, are

-0 list Print only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range
N-M means pages N through M; an initial -N means
from the beginning to page N; and a final N- means
from N to the end. (See BUGS, later in this section.)

-nN Number the first generated page N.

-sN Generate output to encourage typesetter to stop every
N pages, produce a trailer to allow changing cassettes,
and resume when the typesetter's start button is
pressed.

-mnarne Insert the macro file /usr / lib/trnac/trnac. name
at the beginning of the inputfiles.

-raN Set register a (one character name) to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the . rd
request.

-a Send a printable ASCII approximation of the results to
the standard output.

-Tdest Prepare output for device dest, which may be a laser
printer or a typesetter. For POSTSCRIPT output destined
for an Apple LaserWriter, use -Tpsc, and pipe the
output to the POSTSCRIPT filter psdi tel).

February, 1990
Revision C

The supported typesetter is the Autologic APS-5
(-Taps). For output destined for an Apple Image-

1

troff(l) troff(l)

Writer II printer, use the flag -Tiw and pipe the output
to daiw(I). Other output devices may be available.

EXAMPLES
troff -04,8-10 -mabc file1 file2

requests formatting of pages 4, 8, 9, and 10 of a document con­
tained in the files named file1 and file2 and invokes the mac­
ro package abc.

FILES
/bin/troff
/usr/lib/suftab
/tmp/ta$#
/tmp/trtmp*
/usr/lib/tmac/tmac.*

/usr/lib/macros/*
/usr/lib/font/dev*/*

suffix hyphenation tables
temporary file
temporary file
standard macro files and
pointers
standard macro files
font width tables

SEE ALSO
checknr(I), cw(I), daps(l), daiw(I), deroff(l), eqn(I),
grap(I), mrnt(l), nroff(l), otroff(l), pic(I), psdi t(l),
tbl(I), tc(l), mrn(5), ms(5), mv(5).
"nroff/troff Reference Manual" and "Introduction to
troff and mrn" in A/UX Text Processing Tools.

BUGS

2

The. tl request may not be used before the first break-producing
request in the input to troff.

troff recognizes only Eastern Standard Time; as a result,
depending on the time of the year and on your local time zone, the
date that t ro f f generates may be off by one day from your idea
of what the date is.

When troff is used with the -olist flag option inside a pipeline
(for example, with one or more of cw(l), eqn(l), and tbl(l», it
may cause a harmless broken pipe diagnostic if the last page
of the document is not specified in list.

February, 1990
Revision C

true(1) true(1)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION
true does nothing, returning an exit status of zero. false does
nothing, returning a nonzero exit status. They are typically used
in input to sh(l) and/or ksh(l).

EXAMPLES
while true
do

command
done

FILES
/bin/true
/bin/false

SEE ALSO
ksh(l), sh(l).

DIAGNOSTICS
true has exit status zero, false has exit status nonzero.

February, 1990
Revision C

1

tset(l) tset(l)

NAME
tset, reset - set or reset the terminal to a sensible state

SYNOPSIS
tset [-] [-a type] [-A] [-d type] [-eel [-Ee] [-ke] [-r]
[-m port] [-p type] [-Q] [-r] [-s] [-S]

reset

DESCRIPTION

1

tset causes terminal-dependent processing, such as setting erase
and kill characters, setting or resetting delays, and so on. It first
determines the type of terminal involved, names for which are
specified by the / et e / te rme a p data base, and then does neces­
sary initializations and mode settings. In the case where no argu­
ment types are specified, tset simply reads the terminal type out
of the environment variable TERM and reinitializes the terminal.
The rest of this manual page concerns itself with type initializa­
tion, typically done once at login, and flag options used at initiali­
zation time to determine the terminal type and set up terminal
modes.

When used in a startup script . profile (for sh(l) users) or
.login (for esh(1) users), it is desirable to give information
about the types of terminals usually used when connecting to the
computer through a modem. These ports are initially identified as
being dialup, plugboard, or arpanet, and so on. To speci­
fy which terminal type is usually used on these ports, -m (map) is
followed by the appropriate port type identifier, an optional baud
specification, and the terminal type to be used if the mapping con­
ditions are satisfied. If more than one mapping is specified, the
first applicable mapping prevails. A missing type identifier
matches all identifiers.

Bauds are specified as with stty(1), and are compared with the
speed of the diagnostic output (which is almost always the control
terminal). The baud test may be any combination of: >, =, <, @,

and !; @ is a synonym for = and ! inverts the sense of the test. To
avoid problems with metacharacters, it is best to place the entire
argument to -m (map) within' , characters; users of esh(1) must
also put a \ before any ! used here.

Thus,

tset -m 'dialup>300:adm3a' -m dialup:dw2 \
-m 'plugboard:?adm3a'

February, 1990
Revision C

tset(1) tset(1)

causes the terminal type to be set to an adm3 a if the port in use is
a dialup at a speed greater than 300 baud; to a dw2 if the port is a
dialup at a speed of 300 baud or less.

Note: The above command can be entered on one line by
omitting the backslash character.

If the type above begins with a question mark, you are asked if
you really want that type. A null response means to use that type;
otherwise, another type can be entered which will be used instead.
Therefore, in this case, you will be queried on a plugboard port as
to whether you are using an adm3a. For other ports the port type
will be taken from the /etc/ttytype file or a final, default
type flag option may be given on the command line, not preceded
by a -m.

It is often desirable to return the terminal type, as specified by the
-m flag options, and information about the terminal to a shell's en­
vironment. This can be done using the - s flag option; using the
Bourne shell, sh(I),

eval 'tset -s options... '

or using the C shell, csh(1).

tset -s options ... > tset$$
source tset$$
rm tset$$

These commands cause tset to generate as output a sequence of
shell commands which place the variables TERM and TERMCAP in
the environment; see env i ron(5).

Once it knows the terminal type, tset engages in terminal mode
setting. This normally involves sending an initialization sequence
to the terminal and setting the single character erase (and optional­
ly the line-kill (full line erase» characters. tset reports these
settings by printing the diagnostic messages Kill set to c
and Erase set to c on the standard error output, unless the
-Q flag option is specified.

On terminals that can backspace but not overstrike (such as a
CRT), and when the erase character is the default erase character
(41= on standard systems), the erase character is changed to a
CONTROL-H (backspace).

February, 1990
Revision C

2

tset(1) tset(1)

Other flag options are

-A Prompts the user for the terminal type

-ec Set the erase character to be the named character c on all
terminals, the default being the backspace character on the
terminal, usually CONTROL-H.

- kc Similar to -e, but for the line kill character, rather than the
erase character; c defaults to CONTROL-X (for purely his­
torical reasons); CONTROL-U is the preferred setting. No
kill processing is done if - k is not specified.

- I Suppresses outputting terminal initialization strings.

-Q Suppresses printing the Erase set to and Kill set
to messages.

-s Outputs the strings to be assigned to TERM and TERMCAP
in the environment, rather than commands for a shell.

For compatibility with earlier versions of tset, a number of flags
are accepted whose use is discouraged:

-d type Equivalent to -m dial up: type.

-p type Equivalent to -m plugboard: type.

-a type

-Ec

-r

Equivalent to -m arpanet : type.

Sets the erase character to c only if the terminal can
backspace.

Prints the terminal type on the standard output.

Prints the terminal type on the diagnostic output.

reset sets the terminal to cooked mode, turns off cbreak and
raw modes, turns on nl, and restores special undefined characters
to their default values.

This is most useful after a program dies, leaving a terminal in a
funny state; you have to type newline reset newline to get it to
work, since RETURN (CONTROL-M) may not be recognized in this
state; often none of the input will be echoed.

It is a good idea to follow reset with tset.

EXAMPLES

3

A typical .login file for a csh user that invokes tset would
be:

set noglob

February, 1990
RevisionC

tset(l) tset(l)

set term = ('tset -e -s -r -d\?h19')
setenv TERM "$term[l]"
setenv TERMCAP "$term[2]"
unset term noglob

This .login sets the environment variables TERM and
TERMCAP for the user's current terminal according to the file
/ et c / t t yt ype. If the terminal line is a dialup line, the user is
prompted for the proper terminal type.

reset

returns the user's terminal to a usable state after being accidentally
set by an interrupted process.

FILES
/bin/tset
/bin/reset
/etc/ttytype
/etc/termcap

SEE ALSO
csh(I), sh(I), stty(I), termcap(4), ttytype(4), en­
viron(5).

BUGS
Should be merged with st ty(I).

reset doesn't set tabs properly; it can't intuitively read personal
choices for interrupt and line kill characters, so it leaves these set
to the local system standards.

It could be well argued that the shell should be responsible for in­
suring that the terminal remains in a sane state; this would elim­
inate the need for this program.

February, 1990 4
Revision C

tsort(1) tsort(1)

NAME
t sort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
tsort produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the
input file. If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated
by blanks. Pairs of different items indicate ordering. Pairs of
identical items indicate presence, but not ordering.

EXAMPLES
ar cr library 'lorder *.0 I tsort'

intends to build a new library from existing . a files.

FILES
/usr/bin/tsart

SEE ALSO
larder(I), sart(1), sortbib(I).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS

1

Uses a quadratic algorithm; not worth fixing for the typical use of
ordering a library archive file.

February, 1990
RevisionC

tty(l) tty(l)

NAME
tty - get the terminal's name

SYNOPSIS
tty [-1] [-s]

DESCRIPTION
tty prints the path name of the user's terminal. The -1 flag op­
tion prints the synchronous line number to which the user's termi­
nal is connected, if it is on an active synchronous line. The-s
flag option inhibits printing of the terminal's path name, allowing
one to test just the exit code.

EXAMPLES
tty

produces /dev/tty7 if user is on tty7.

EXIT CODES
2 if invalid options were specified,
o if standard input is a terminal,
1 otherwise.

DIAGNOSTICS
"not on an active synchronous line" if the stan­
dard input is not a synchronous terminal and -1 is specified.
"not a tty" if the standard input is not a terminal and -s is
not specified.

FILES
/bin/tty

SEE ALSO
t tyname(3C).

February, 1990
RevisionC

1

u3b(l)

See rnachid(l)

1

u3b(1)

February, 1990
Revision C

u3b15(1)

February, 1990
Revision C

See machid(1)

u3b15(1)

1

u3b2(1)

1

See machid(l)

u3b2(1)

February, 1990
Revision C

u3b5(1)

February, 1990
Revision C

See machid(1)

u3b5(1)

1

ucbdiff(l) ucbdiff(l)

NAME
ucbdiff - differential file and directory comparator

SYNOPSIS
ucbdiff [-1] [-r] [-s] [-Sname] [-cefhn] [-biwt] dirl
dir2
ucbdiff [-cefhn] [-biwt].filel.file2
ucbdiff [-Dstring] [-biw].filel.file2

DESCRIPTION

1

ucbdiff is used by the rcs(l) Revision Control System. If
both arguments are directories, ucbdi f f sorts the contents of the
directories by name and then runs the regular file diff algorithm
(described later in this section) on text files which are different.
Binary files which differ, common subdirectories, and files which
appear in only one directory are listed. Options, when comparing
directories, are:

-1 Long output format; each set of text file differences is piped
through pr(l) to paginate the output; other differences are
remembered and summarized after all text file differences are
reported.

-r Causes application of ucbdiff recursively to common sub­
directories encountered.

- s Causes ucbdi f f to report files which are the same and are
otherwise not mentioned.

-Sname
Starts a directory ucbdiff in the middle, beginning with
the file name.

When run on regular files and when comparing text files which
differ during directory comparison, ucbdi f f tells what lines
must be changed in the files to bring them into agreement. Except
in rare circumstances, ucbdiff finds the smallest sufficient set
of file differences. If neither filel nor file2 is a directory, then ei­
ther may be given as -, in which case the standard input is used.
Iffilel is a directory, then a file in that directory whose filename is
the same as the filename of file2 is used (and vice versa).

There are several options for output format; the default output for­
mat contains lines of these forms

nl a n3, n4
nl,n2 dn3
nl , n2 c n3 , n4

February, 1990
Revision C

ucbdiff(1) ucbdiff(l)

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a
for d and reading backward, one may ascertain how to equally
convertfile2 into filel. As in ed, identical pairs (where nl=n2 or
n3=n4) are abbreviated as a single number.

Following each of these lines are all the lines affected in the first
file flagged by <, then all the lines that are affected in the second
file flagged by >.
Except for -b, -w, -i, or -t (which may be given with any of
the others), the following options are mutually exclusive.

-e Produces a script of a, c, and d commands for the edi­
tor ed, which will recreate file2 from filel. In connec­
tion with -e, the following shell program may help
maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version ed scripts
($2, $3, ...) made by ucbdiff need be on hand. A
"latest version" appears on the standard output.

(shifticat $*iecho 'l,$p') led - $1

Extra commands are added to the output when compar­
ing directories with -e, so that the result is a sh(1)
script for converting text files common to the two
directories from their state in dir 1 to their state in dir2.

-f Produces a script similar to that of -e, but in the oppo­
site order and not useful with ed.

-n Produces a script similar to that of -e, but in the oppo­
site order and with a count of changed lines on each in­
sert or delete command. This is the form used by
rcsdiff(1).

-c Produces a ucbdiff with lines of context. The de­
fault is to present 3 lines of context; this may be
changed, for example to 10, by -clO. With -c, the
output format is modified slightly. The output begins
with an identification of the files involved and their
creation dates; then each change is separated by a line
with a dozen *' s. The lines removed from filel are
marked with a -; those added to file2 are marked +.
Lines which are changed from one file to the other are
marked in both files with with a !.

February, 1990 2
Revision C

ucbdiff(l) ucbdiff(l)

Changes that are separated by fewer than the number of lines in
the current context are grouped together on output (This is a
change from the previous ucbdiff -c but the resulting output
is usually much easier to interpret)

- h Does a fast, half-hearted job. It works only when
changed stretches are short and well separated, but will
work on files of unlimited length.

-Dstring Causes ucbdiff to create a merged version of filel
and file2 on the standard output with C preprocessor
controls included, so that a compilation of the result
without defining string is equivalent to compiling filel ,
while defining string will yield file2.

-b Causes trailing blanks (spaces and tabs) to be ignored
and other strings of blanks to compare equal.

-w Similar to -b but causes whitespace (blanks and tabs)
to be totally ignored. For example, the following two
lines will compare equal.

if (a == b)
if (a==b)

-i Ignores the case of letters. For example, A will com­
pare equal to a.

-t Will expand tabs in output lines. Normal or -c output
adds character(s) to the front of each line, which may
alter the indentation of the original source lines and
make the output listing difficult to interpret. This op­
tion will preserve the original source's indentation.

FILES
/usr/ucb/ucbdiff
/tmp/d?????
/usr/lib/ucbdiffhfor-h
/bin/ diff for directory comparisons
/bin/pr

SEE ALSO

3

cc(l), cmp(l), comm(l), diff(l), ed(l), rcs(l),
ucbdiff3(1).

February, 1990
RevisionC

ucbdiff(l) ucbdiff(l)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS
Editing scripts produced under the -e or -f option are naive
about creating lines consisting of a single period (.).

When comparing directories with the - b, -W, or - i options
specified, ucbdiff first compares the files like cmp and then de­
cides to run the ucbdiff algorithm if they are not equal. This
may cause a small amount of spurious output if the files then turn
out to be identical because the only differences are insignificant
blank string or case differences.

February, 1990 4
Revision C

ucbdiff3(1) ucbdiff3(1)

NAME
ucbdiff3 - 3-way differential file comparison

SYNOPSIS
ucbdiff3 [-exEX3] filel file2 file3

DESCRIPTION

1

ucbdiff3 is used by the rcs(l) Revision Control System.
u cbdi f f 3 compares three versions of a file and publishes
disagreeing ranges of text flagged with these codes.

====1

====2

====3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given
file to some other is indicated in one of two ways.

f: nl a Text is to be appended after line number nl in
file/, where/= 1,2, or 3.

/: nl, n2c Text is to be changed in the range line nl to
line n2. If nl = n2, the range may be abbrevi-
ated to nl.

The original contents of the range follows immediately after a c
indication. When the contents of two files are identical, the con­
tents of the lower-numbered file is suppressed.

Under the -e option, ucbdi f f 3 publishes a script for the editor
ed that will incorporate into filel all changes between file2 and
file3, (the changes that would normally be flagged ==== and
====3). Option -x (-3) produces a script to incorporate only
changes flagged ==== (====3). The following command will
apply the resulting script tofilel.

(cat script; echo 'l,$p') I ed - filel

The - E and -x are similar to -e and -x, respectively, but treat
overlapping changes (changes that would be flagged with ==== in
the normal listing) differently. The overlapping lines from both
files will be inserted by the edit script, bracketed by < < < < < < and
»»» lines.

February, 1990
Revision C

ucbdiff3 (I) ucbdiff3(1)

For example, suppose lines 7-8 are changed in both fl and f2.
Applying the edit script generated by the command

ucbdiff3 -E fl f2 f3

to f 1 results in the file:

lines 1-6 oj fl
«««< fl
lines 7-8 oj fl

lines 7-8 oj f 3
»»»> f3
rest oJfl

The -E option is used by ReS merge(1) to insure that overlap­
ping changes in the merged files are preserved and brought to
someone's attention.

FILES
/usr/ucb/ucbdiff3
/tmp/d3?????
/usr/lib/ucbdiff3

SEE ALSO
diff(l), diff3(1), rcs(I), ucbdiff(I).

BUGS
Text lines that consist of a single period (.) will defeat -e.

February, 1990
Revision C

2

ul(l) ul(l)

NAME
ul - filter special underlining sequences imbedded in text for use
at a display device

SYNOPSIS
ul [-t terminal] [name ...]

DESCRIPTION
ul reads the named files (or standard input if none are given) and
translates occurrences of underscores to the sequence which indi­
cates underlining. If -t is present, terminal is used as the termi­
nal kind. Otherwise, first the environment is searched, and if
necessary, /usr/lib/terminfo is read to determine the ap­
propriate sequences for underlining. If none of the fields us, ue,
or uc are present, and if so and se are present, standout mode is
used to indicate underlining. If the terminal can overstrike, or
handles underlining automatically, ul behaves like cat(1). If the
terminal cannot underline, underlining is ignored.

EXAMPLES
ul filel

displays filel on the terminal with underlined portions of the
file either underlined, or in reverse video when this flag option is
supported for the terminal.

FILES
/usr/bin/ul
/bin/cat
/usr/lib/terminfo

SEE ALSO
colcrt(1), man(1), nroff(1).

BUGS

1

nroff usually outputs a series of backspaces and underlines in­
termixed with the text to indicate underlining. No attempt is made
to optimize the backward motion.

February, 1990
RevisionC

uname(1) uname(l)

NAME
uname - display identification information about the current
system

SYNOPSIS
uname [-a] [-m] [-n] [-r] [-5] [-v]

DESCRIPTION
uname displays the system name of the current system on the
standard output file. It is mainly useful to determine which system
one is using. The flag options cause selected information returned
by uname(2) to be displayed:

-5 display the system name (default).

-n display the nodename (the nodename may be a name that the
system is known by to a communications network).

-r display the operating system release.

-v display the operating system version.

-m display the machine hardware name.

-a display all the above information.

EXAMPLES
uname

on NUX would display on the screen

A/UX

FILES
/bin/uname

SEE ALSO
uname(2).

February, 1990
Revision C

1

uncompact(l)

See compact(l)

1

uncompact(l)

February, 1990
RevisionC

uncompress(l)

February, 1990
Revision C

See compress(l)

uncompres s (1)

1

unexpand(1)

See expand(l)

1

unexpand(1)

February, 1990
Revision C

unget(1) unget(1)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-n] [-rSID] [-s]file ...

DESCRIPTION
unget undoes the effect of a get -e done prior to creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that non-SeeS files and unreadable files are silently ig­
nored. If a name of - is given, the standard input is read with
each line being taken as the name of an sees file to be processed.

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intend­
ed. (This would have been specified by get as the
"new delta") The use of this keyletter is necessary
only if two or more outstanding gets for editing on
the same sees file were done by the same person
(login name). A diagnostic results if the specified
SID is ambiguous, or if it is necessary and omitted
on the command line.

-s Suppresses the printout, on the standard output, of
the intended delta's SID.

-n Causes the retention of the gotten file which would
normally be removed from the current directory.

EXAMPLES
% unget s.test1.e
1.2

undoes version 1.2 of test1 . e set up for editing by an earlier
get -e.

FILES
/usr/bin/unget

SEE ALSO
admin(1), ede(1), eomb(1), del ta(1), get(l), help(1),
prs(1), rmdel(1), saet(1), sees(1), secsdiff(1),
val(1), what(1), seesfile(4).
"sees Reference" in AIUX Programming Languages and Tools,
Volume 2.

February, 1990
Revision C

1

unget(l)

DIAGNOSTICS
Use help(l) for explanations.

2

unget(l)

February, 1990
Revision C

uniq(l) uniq(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-u] [-d] [-c] [+n] [-n] [input [output]]

DESCRIPTION
uniq reads the input file comparing adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are re­
moved; the remainder is written on the output file. input and out­
put should always be different Note that repeated lines must be
adjacent in order to be found; see sort(1). If the -u flag option
is used, just the lines that are not repeated in the original file are
output. The -d flag option specifies that one copy of just the re­
peated lines is to be written. The normal mode output is the union
of the -u and -d mode outputs.

The -c flag option supersedes -u and -d and generates an output
report in default style but with each line preceded by a count of
the number of times it occurred.

The n arguments specify skipping an initial portion of each line in
the comparison:

-n The first n fields together with any blanks before each are ig­
nored. A field is defined as a string of nonspace, nontab char­
acters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before
characters.

EXAMPLES
uniq filel

prints contents of f i 1 e 1 with adjacent identical lines removed.

FILES
/usr/bin/uniq

SEE ALSO
comm(1), diff(I), sart(1).

February, 1990
Revision C

1

units(l) units(l)

NAME
uni t s - conversion program

SYNOPSIS
units

DESCRIPTION
uni t s converts quantities expressed in various standard scales to
their equivalents in other scales. It works interactively (see the
examples).

A quantity is specified as a multiplicative combination of units op­
tionally preceded by a numeric multiplier. Powers are indicated
by suffixed positive integers, division by the usual sign (see the
second example).

uni t s only does multiplicative scale changes; thus it can convert
Kelvin to Rankine, but not Celsius to Fahrenheit. Most familiar
units, abbreviations, and metric prefixes are recognized, together
with a generous leavening of exotica and a few constants of nature
including:

pi
c
e
g
force
mole
water
au

ratio of circumference to diameter,
speed of light
charge on an electron
acceleration of gravity
same as g
Avogadro's number
pressure head per unit height of water
astronomical unit

pound is not recognized as a unit of mass; lb is. Compound
names are run together, (for example, light year). British units
that differ from their U.S. counterparts are prefixed with br, thus:
brgallon. For a complete list of units, type

cat /usr/lib/unittab

EXAMPLES
You have: inch
You want: em

* 2.540000e+OO
/ 3.937008e-Ol

You have: 15 lbs force/in2

February, 1990
RevisionC

units(l)

You want: a tm

FILES

* 1.02068ge+OO
/ 9.79729ge-Ol

/usr/bin/units
/usr/lib/unittab

February, 1990
Revision C

units(l)

2

unpack(l)

See pack(1)

1

unpack(l)

February, 1990
RevisionC

updater(l) updater(l)

NAME
u pda t e r - update files between two machines

SYNOPSIS
updater [key] local remote ...

DESCRIPTION
updater updates files between two machines.

One of the following key letters must be included:

t Take files from the remote machine, updating the local
machine.

p Put files from the local machine onto the remote machine, up­
dating the remote machine.

d List the difference between files on the local and remote
machines.

The following key letters are optional:

u Update a file only if it exists on both machines; this is the de-
fault condition.

r Replace a file if it did not exist on the destination machine.

local refers to the local directory name.

remote refers to the remote directory names. Only one remote
name can be specified if the p (put) key is specified.

ALGORITHM
Open / dev / tty 0 to the remote machine.

stty the local port and send a stty command to the remote
machine to condition both ends of the connection.

Send a

cd remote ; sumdir. I sort +2 > /tmp/rXXXXX

to remote machine for each remote system;

cd local ; sumdir. I sort > /tmp/LXXXXX

for local machine.

Wait for remote to complete.

Take / tmp / rXXXXX.

February, 1990
Revision C

1

updater(l) updater(l)

Do a comparison between the local and the union of the remotes:

exists on remote only:

If both the t and r keys are specified, take the file; oth­
erwise list the file.

exists on local only:

If both p and r keys are specified, put the file; other­
wise list the file.

exist on both but different:

If t key is specified, take the file.

If p key is specified, put the file.

If d key is specified, list the file.

same:

nothing

EXAMPLES
updater d ...

uses /dev/ttyO to communicate with a remote machine and
compares directories on the remote and local systems.

FILES
/usr/bin/updater

2 February, 1990
RevisionC

uptime(I) uptime(I)

NAME
uptime - show how long system has been up

SYNOPSIS
uptime

DESCRIPTION
uptime prints the current time, the length of time the system has
been up, the number of users currently logged into the system, and
the average number of jobs in the run queue over the last 1, 5, and
15 minutes. It is, essentially, the first line of a w(1) command.

FILES
/usr/ucb/uptime
/dev/kmem
/etc/utmp

SEE ALSO
ps(I), ruptime(IN), w(1).

February, 1990
Revision C

1

users(l) users(l)

NAME
users - compact list of users who are on the system

SYNOPSIS
users [file]

DESCRIPTION
users lists the login names of the users currently on the system
in a compact, one-line format. users takes the file from which it
reads user information an optional argument; the default is
/etc/utmp.

FILES
/usr/ucb/users
/etc/utmp

SEE ALSO
finger(1), w(1), who(1).

1 February, 1990
Revision C

uucp(lC) uucp(lC)

NAME
uucp, uu1og, uuname - UNIX® system to UNIX system
copy

SYNOPSIS
[-c] [-C] [-d] [-esys] [-£] [-j] [-rq/ile] [-nuser] [-r] source­
files destination-file

uu10g [-ssys] [-uuser]

uuname [-1] [-v]

DESCRIPTION
uucp
uucp copies files named by the source-file arguments to the
destination-file argument. A filename may be a pathname on your
system, or may have the form

system-name! pathname

where system-name is taken from a list of system names that
uucp knows about. In addition, system-name may be a list of
names such as

system-name! system-name! . . . ! system-name! pathname

in which case an attempt is made to send the file via the specified
route and only to a destination in the directory PUBDIR (see
below). Care should be taken to ensure that intermediate nodes in
the route are willing to forward information.

The shell metacharacters ?, *, and [...] appearing in pathname
are expanded on the appropriate system.

Pathnames may be any of the following:

a full pathname

a pathname preceded by
-user where user is a login name on the specified system
and is replaced by that user's login directory

a pathname preceded by
-fuser where user is a login name on the specified sys­
tem and is replaced by that user's directory under PUB­
D I R, where P UBD I R is the public directory on the re­
mote system to which all uucp users have access and at
which they enter

February, 1990
Revision C

1

uucp(lC) uucp(lC)

2

anything else if
uucp prefixes it with the current directory

If the result is an erroneous pathname for the remote system, the
copy fails. If the destination-file is a directory, the last part of the
source-file name is used.

If a simple -user destination is inaccessible to uucp, data is
copied to a spool directory, and the user is notified by mail(l).

uucp preserves execute permissions across the transmission and
gives 0666 read and write permissions. See chmod(2).

The following flag options are interpreted by uucp:

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying
the file to the spool directory (default).

-c Copy the source file to the spool directory.

-rrftle Report the status of the transfer in file. If file is omitted,
send mail to the requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-esys Send the uucp command to system sys to be executed
there.

Note: This will be successful only if the remote
machine allows uucp to be executed by
/usr/lib/uucp/uuxqt.

-g Assign a priority, or grade, to the uucp request, so
uucico can later process requests of selected grades
only.

-r Queue the job, but do not start the file-transfer process.
By default, a file-transfer process is started each time
uucp is evoked.

-j Control the writing of the uucp job number to standard
output (see below).

uucp associates a job number with each request. This job
number can be used by uustat to obtain the status of the job or
terminate the job.

February, 1990
RevisionC

uucp(IC) uucp(IC)

The environment variable JOBNO and the -j flag option are used
to control the listing of the uucp job number on standard output.
If the environment variable JOBNO is undefined or set to OFF, the
job number is not listed (default). If uucp is then invoked with
the -j flag option, the job number is listed. If the environment
variable JOBNO is set to ON and is exported, a job number is writ­
ten to standard output each time uucp is invoked. In this case, the
-j flag option suppresses the output of the job number.

uulog
uulog queries a summary log of uucp and uux(1C) transactions
in the file /usr / spool /uucp/LOGFILE.

The following flag options cause uulog to print logging informa­
tion:

-ssys Print information about work involving system sys. If sys
is not specified, then logging information for all systems
is printed.

-uuser Print information about work done for the specified user.
If user is not specified, then logging information for all
users is printed.

uuname
uuname lists the uucp names of known systems. The -1 flag
option returns the local system name. The -v flag option prints
additional information about each system. A description is printed
for each system that has a line of information in
/usr / lib/uucp/ADMIN. The format of ADMIN is:

sysname TAB description TAB

EXAMPLES
uucp file! ucbvax! /usr/spool/uucppublic/file2

sends filel from the local machine via the uucp network to the
ucbvax machine, where it is saved as the file
/usr/spool/uucppublic/file2.

FILES
/usr/bin/uucp
/usr/bin/uulog
/usr/bin/uuname
/usr/lib/uudemon.day
/usr/lib/uudemon.hour
/usr/lib/uudemon.week

February, 1990
Revision C

Performs once per day
Performs once per hour
Performs once per week

3

uucp(lC) uucp(lC)

/usr/spool/uucp
/usr/spool/uucppublic

/usr/lib/uucp/*

Spool directory
Public directory (PUBDIR) for
receiving and sending
Other data and program files

NOTES
To send files that begin with a dot, for example, . profile, the
files must be qualified with the dot. For example, . prof*,
. profile, . profil? are correct, whereas *prof*, ?pro­
f i 1 e are incorrect.

uucp does not generate a job number for a strictly local transac­
tion.

SEE ALSO
ftp(lN), mail(l), telnet(lN), tip(lC), uux(lC),
chgnod(lM), chmod(2),

"Using UUCP," in theA/UX Communications User's Guide.

WARNINGS
The domain of remotely accessible files may (and for obvious
security reasons, usually should) be severely restricted. Very like­
ly, you will not be able to fetch files by pathname, so ask a respon­
sible person on the remote system to send them to you. For the
same reasons, you will probably not be able to send files to arbi­
trary pathnames. As distributed, the remotely accessible files are
those whose names begin /usr / spool/uucppublic
(equivalent to -nuucp or just -).

BUGS

4

All files received by uucp are owned by uucp.

The -m flag option only works when sending files or receiving a
single file. Receiving multiple files specified by the special shell
characters ?, *, and [...] does not activate the -m flag option.

The -m flag option does not work if all transactions are local or if
uucp is executed remotely via the -e flag option.

The -n flag option functions only when the source and destination
are not on the same system.

Only the first six characters of system-name are significant. Any
excess characters are ignored.

February, 1990
RevisionC

uudecode(lC)

February, 1990
Revision C

See uuencode(IC)

uudecode(IC)

1

uuencode(lC) uuencode(1C)

NAME
uuencode, uudecode - encode/decode a binary file for
transmission via mail

SYNOPSIS
uuencode [source] remotedest

uudecode [file]

DESCRIPTION
uuencode and uudecode are used to send a binary file via
uucp (or other) mail. This combination may be used over in­
direct mail links even when uusend(lC) is not available.

uuencode takes the named source file (default standard input)
and produces an encoded version on the standard output. The en­
coding uses only printing ASCII characters, and includes the
mode of the file and the remotedest for recreation on the remote
system.

uudecode reads an encoded file, strips off any leading and trail­
ing lines added by mailers, and recreates the original file with the
specified mode and name.

The intent is that all mail to the user decode should be filtered
through the uudecode program. This way the file is created au­
tomatically without human intervention. This is possible on the
uucp network either by using sendmail or by making rmail a
link to mailx instead of mail. In each case, an alias must be
created in a master file to get the automatic invocation of
uudecode.

If these facilities are not available, the file may be sent to a user on
the remote machine who can uudecode it manually.

The encode file has an ordinary text form and may be edited by
any text editor to change the mode or remote name.

FILES
/usr/ucb/uudecode
/usr/ucb/uuencode

SEE ALSO
mail(l), uucp(lC), uusend(1C), uux(lC).
"Using UUCP" in A/UK Communications User's Guide.

1 February, 1990
Revision C

uuencode(IC) uuencode(IC)

BUGS
The file is expanded by 35% (3 bytes become 4 plus control infor­
mation) causing it to take longer to transmit.

The user on the remote system who is invoking uudecode (often
uucp) must have write permission on the specified file.

February, 1990
RevisionC

2

uulog(lC)

See uucp(lC)

1

uulog(lC)

February, 1990
Revision C

uuname(IC)

February, 1990
Revision C

See uucp(IC)

uuname(IC)

1

uupick(lC)

See uuto(lC)

1

uupick(lC)

February, 1990
Revision C

uusend(lC) uusend(lC)

NAME
uusend - send a file to a remote host

SYNOPSIS
uusend [-mmode] sourcefile sysl ! sys2 ! ... ! remotefile

DESCRIPTION
uusend sends a file to a given location on a remote system. The
system need not be directly connected to the local system, but a
chain of uucp(1C) links needs to connect the two systems.

If the -m flag option is specified, the mode of the file on the re­
mote end will be taken from the octal number given. Otherwise,
the mode of the input file will be used.

The sourcefile can be -, meaning to use the standard input. Both
of these flag options are primarily intended for internal use of
uusend.

The remotefile can include the -userid syntax.

DIAGNOSTICS
If anything goes wrong any further away than the first system
down the line, you will never hear about it.

FILES
/usr/ucb/uusend

SEE ALSO
uucp(IC), uuencode(1), uux(1C).
"Using UUCP" in AIUX Communications User's Guide.

BUGS
This command shouldn't exist, since uucp should handle it.

All systems along the line must have the uusend command avail­
able and allow remote execution of it.

Some uucp systems have a bug where binary files cannot be the
input to a u ux command. If this bug exists in any system along
the line, the file will show up severely munged.

February, 1990
Revision C

1

uustat(lC) uustat(lC)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-chour] [-jjobn] [-kjobn] [-mmch] [-MInch] [-ohour]
[-0] [-q] [-rjobn] [-ssys] [-uuser] [-yhour]

DESCRIPTION

1

uustat will display the status of, or cancel, previously specified
uucp commands, or provide general status on uucp connections
to other systems. The following flag options are recognized:

-jjobn Report the status of the uucp request jobn. If all is
used for jobn, the status of all uucp requests is reported.
An argument must be supplied; otherwise the usage
message will be printed and the request will fail.

-kjobn Kill the uucp request whose job number is jobn. The
killed uucp request must belong to the person issuing
the uustat command unless one is the superuser.

-rjobn Rejuvenate jobn. That is, jobn is touched so that its
modification time is set to the current time. This
prevents uuclean from deleting the job until the jobs
modification time reaches the limit imposed by uu­
clean.

-chour Remove the status entries which are older than hour
hours. This administrative option can only be initiated
by the user uucp or the superuser.

-uuser Report the status of all uucp requests issued by user.
-ssys Report the status of all uucp requests which communi-

cate with remote system sys.
-ohour Report the status of all uucp requests which are older

than hour hours.
-yhour Report the status of all uucp requests which are

younger than hour hours.
-mmch Report the status of accessibility of machine mch. If

mch is specified as all, then the status of all machines
known to the local uucp are provided.

-MInch This is the same as the -m option except that two times
are printed. The time that the last status was obtained
and the time that the last successful transfer to that sys­
tem occurred.

-0 Report the uucp status using the octal status codes list­
ed below. If this option is not specified, the verbose
description is printed with each uucp request.

February, 1990
Revision C

uustat(IC) uustat(lC)

-q List the number of jobs and other control files queued
for each machine and the time of the oldest and young­
est file queued for each machine. If a lock file exists for
that system, its date of creation is listed.

When no options are given, uustat outputs the status of all
uucp requests issued by the current user. Note that only one of
the flag options -j, -m, -k, -C, -r, can be used with the rest of
the other options.

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uucp requests that were issued by user
hdc to communicate with system mhtsa within the last 72 hours.
The meanings of the job request status are:

job-number user remote-system command-time status-time
status

where the status may be either an octal number or a verbose
description. The octal code corresponds to the following descrip­
tion:

OCTAL
000001

000002

000004

000010
000020

000040
000100
000200

000400
001000
002000
004000
010000
020000

February, 1990
RevisionC

STATUS
the copy failed, but the reason cannot
be determined
permission to access local file is
denied
permission to access remote file is
denied
bad uucp command is generated
remote system cannot create tem­
porary file
cannot copy to remote directory
cannot copy to local directory
local system cannot create temporary
file
cannot execute uucp
copy (partially) succeeded
copy finished, job deleted
job is queued
job killed (incomplete)
job killed (complete)

2

uustat(IC) uustat(IC)

The meanings of the machine accessibility status are:

system-name time status

where time is the latest status time and status is a self-explanatory
description of the machine status.

FILES
/usr/bin/uustat
/usr/spool/uucp
/usr/lib/uucp/L stat
/usr/lib/uucp/R=stat

SEE ALSO
uucp(IC).

spool directory
system status file
request status file

"The UUCP System" in A/UX Local System Administration.

3 February, 1990
RevisionC

uuto(IC) uuto(IC)

NAME
uuto, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
uuto [-m] [-p] source-files destination
uupick [-ssystem]

DESCRIPTION
uuto sends source-files to destination. uuto uses the uucp(IC)
facility to send files, while it allows the local system to control the
file access. A source-file name is a path name on your machine.
Destination has the form:

system! user

where system is taken from a list of system names that uucp
knows about (see uuname). logname is the login name of some­
one on the specified system.

Two flag options are available:

-p Copy the source file into the spool directory be­
fore transmission.

-m Send mail to the sender when the copy is com-
plete.

The files (or sub-trees if directories are specified) are sent to PUB­
DIR on system, where PUBDIR is a public directory defined in the
uucp source. Specifically the files are sent to

PUBDIR/ receive/user /mysystem/files.

The destined recipient is notified by mail(l) of the arrival of
files.

uupick accepts or rejects the files transmitted to the user.
Specifically, uupick searches PUBDIR for files destined for the
user. For each entry (file or directory) found, the following mes­
sage is printed on the standard output:

from-system: [file file-name] [dir dirname] ?

uupick then reads a line from the standard input to determine the
disposition of the file:

newline

d

m [dir]

February, 1990
Revision C

Go on to next entry.

Delete the entry.

Move the entry to named directory
dir (current directory is default).

1

uuto(IC) uuto(IC)

a [dir]

p

q

EOT (CoNfROL-D)

! command

Same as m except moving all the
files sent from system.

Print the content of the file.

Stop.

Sameasq.

Escape to the shell to do command.

* Print a command summary.

uupick invoked with the -ssystem option will only search the
PUBDIR for files sent from system.

EXAMPLES
uuto -p file! file2 file3 ucbvax!kalash

would send the three files to "kalash" on "ucbvax"

uupick [executed by user kalash]

would tell him what has arrived and from where.

NOTES
In order to send any files, they must be readable by others; see In
order to send any files, they must be readable by others; see
chmod(I). chmod(I). In order to send files that begin with a dot
(for example, . profile) the file must be qualified with a dot.
For example: . profile, . prof*, . profil? are correct;
whereas *prof*, ?profile are incorrect.

FILES
/usr/bin/uupick
/usr/bin/uuto
PUBDIR=/usr/spool/uucppublic

SEE ALSO

2

chmod(I), mail(I), uucp(IC), uustat(IC), uux(1C),
uuclean(IM).
"Using UUCP" in AIUX Communications User's Guide.

February, 1990
RevisionC

uux(lC) uux(lC)

NAME
uux - UNIX-to-UNIX system command execution

SYNOPSIS
uux [-] [-ggrade] [-j] [-1] [-rrifile] [-n] [-p] [-r] [-xleve/]
[-z] command-string

DESCRIPTION
u ux will gather zero or more files from various systems, execute a
command on a specified system, and then send standard output to
a file on a specified system. Note that for security reasons, many
installations will limit the list of commands executable on behalf
of an incoming request from uux. Many sites will permit little
more than the receipt of mail (see mai1(l)) via uux.

The command-string is made up of one or more arguments that
look like a shell command line, except that the command and
filenames may be prefixed by system-name!. A null system-name
is interpreted as the local system.

Filenames may be one of the following:

(1) A full pathname.

(2) A pathname preceded by - xxx where xxx is a login name on
the specified system and is replaced by that user's login
directory.

(3) Anything else is prefixed by the current directory.

Any special shell characters such as <>; I should be quoted either
by quoting the entire command-string, or quoting the special char­
acters as individual arguments.

uux will attempt to get all files to the execution system. For files
which are output files, the filename must be escaped by using
parentheses.

u ux will notify you if the requested command on the remote sys­
tem was disallowed. The response comes by remote mail from the
remote machine. Executable commands are listed in
/usr/1ib/uucp/L. cmds on the remote system. The format
of the L . cmds file is

cmd, machine} , machine2, ...

If no machines are specified, then any machine can execute cmd.
If machines are specified, only the listed machines can execute
cmd. If the desired command is not listed in L. cmds, then no

February, 1990
Revision C

1

uux(lC) uux(lC)

2

machine can execute that command.

Redirection of standard input and output is usually restricted to
files in PUBDIR. Directories into which redirection is allowed
must be specified in /usr/1ib/uucp/USERFILE by the sys­
tem administrator. See "Using UUCP" in AIUX Communications
User's Guide.

The following flag options are interpreted by uux.

The standard input to u ux is made the standard input to the
command-string.

-ggrade
Sets transmit priority to the level grade. The argument
grade is a single letter or number. Lower ASCII-sequence
characters will cause the job to be transmitted earlier dur­
ing a particular conversation.

- j Controls writing of the uucp job number to standard out­
put.

-1 Tries to make a link from the original file to the spool
directory. If the link cannot be made, then copy the file.

-rrifile Reports the status of the transfer in file. If file is omitted,
send mail to the requester when the copy is completed.

-n Sends no notification to user.

-p Takes the input for the command-string from a pipe; the
same as-.

-r Queues the job, but does not start the file transfer.

-xlevel
Produces debugging output on the standard output. The
level is a number between 0 and 9; higher numbers give
more information than lower numbers.

- z Notifies the user if the command succeeds.

uux associates a job number with each request. This job number
can be used by uustat to obtain status or terminate the job.

The environment variable JOBNO and the - j flag option are used
to control the listing of the u ux job number on standard output. If
the environment variable JOBNO is undefined or set to OFF, the
job number will not be listed (default). If uucp is then invoked
with the - j flag option, the job number will be listed. If the en­
vironment variable JOBNO is set to ON and is exported, a job

February, 1990
Revision C

uux(IC) uux(lC)

number will be written to standard output each time uux is in­
voked. In this case, the - j flag option will suppress output of the
job number.

EXAMPLES
uux !diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fl.diff

will get the fl files from the usg and pwba machines, execute a
di f f command, and put the results in fl. di f f in the local
directory.

uux a!uucp b!/usr/file \(c!/usr/file\)

will send a uucp command to system a to get /usr / file from
system b and send it to system c.

FILES
/usr/bin/uux
/usr/lib/uucp/L.sys

/usr/lib/uucp/L.cmds

list of system names and when
to call them
list of commands for u uxqt
to execute

/usr / lib/uucp/L-devices list of device codes and speeds
/usr/lib/uucp/L-dialcodes

list of phone num bers in
L.sys

/usr/lib/uucp/SYSTEMNAME
name of this system

/usr / lib/uucp/USERFILE list of users and required path­

/usr/lib/uucp/uucico

/usr/lib/uucp/uuclean

/usr/lib/uucp/uuxqt

/usr/spool/uucp
/usr/spool/uucppublic

SEE ALSO

name prefixes
copy in, copy out program;
called by uucp
spool directory cleanup pro­
gram; called by uucp
command execution program;
called by uucp
spool directory
public directory (PUBD I R)

uucp(IC), mail(I), uuclean(lM).
"Using UUCP" in A/UK Communications User's Guide.

February, 1990
Revision C

3

uux(lC) uux(lC)

BUGS

4

Only the first command of a shell pipeline may have a system­
name!. All other commands are executed on the system of the
first command.
The use of the shell metacharacter * will probably not do what
you want it to do. The shell tokens «and» are not implement­
ed.
Only the first six characters of the system-name are significant; ex­
cess characters are ignored.

February, 1990
Revision C

val(1) val(l)

NAME
val- validate sees file

SYNOPSIS
val -
val [-mname] [-rSID] [-3] [-ytype] file . ..

DESCRIPTION
val detennines if the specified file is an sees file meeting the
characteristics specified by the optional argument list. Arguments
to val may appear in any order. The arguments consist of
key letter arguments, which begin with a -, and named files.

val has a special argument, -, which causes reading of the stan­
dard input until an end-of-file condition is detected. Each line
read is independently processed as if it were a command line argu­
ment list.

val generates diagnostic messages on the standard output for
each command line and file processed, and also returns a single
8-bit code upon exit as described below.

The key letter arguments are defined as follows. The effects of
any keyletter argument apply independently to each named file on
the command line.

-3 The presence of this argument silences the diag­
nostic message nonnally generated on the standard
output for any error that is detected while process­
ing each named file on a given command line.

-rSID The argument value SID (SeeS IDentification
String) is an sees delta number. A check is made
to determine if the SID is ambiguous (e.g., -rl is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc., which may exist) or invalid
(e.g., -rl . 0 or -rl . 1 . 0 are invalid because nei­
ther case can exist as a valid delta number). If the
SID is valid and not ambiguous, a check is made to
determine if it actually exists.

-mname The argument value name is compared with the
sees %M% keyword infile.

-ytype The argument value type is compared with the
sees %Y% keyword infile.

February, 1990 1
Revision C

val(l) val(l)

The 8-bit code returned by val is a disjunction of the possible er­
rors, i.e., can be interpreted as a bit string where (moving from left
to right) set bits are interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate key letter argument;
bit 2 = corrupted sees file;
bit 3 = cannot open file or file not sees;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = % Y %, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more files on a given command
line and in tum can process multiple command lines (when read­
ing the standard input). In these cases an aggregate code is re­
turned - a logical OR of the codes generated for each command
line and file processed.

EXAMPLES
val -
-yc -mabc s.abc
-mxyz -ypll s.xyz

first checks if file s . abc has a value c for its type flag and value
abc for the module name flag. Once processing of the first file is
completed, val then processes the remaining files (in this case
s . xy z) to determine if they meet the characteristics specified by
the key letter arguments associated with them.

FILES
/usr/bin/val

SEE ALSO
admin(1), cdc(1), comb(1), del ta(1), get(I), help(I),
prs(I), rmdel(I), sact(I), sccs(1), sccsdiff(1),
unget(I), what(1), sccsfile(4).
"sees Reference" inA/UX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Use help(1) for explanations.

BUGS

2

val can process up to 50 files on a single command line. Any
number above 50 will produce a core dump.

February, 1990
RevisionC

vax(l)

February, 1990
Revision C

See machid(l)

vax(l)

1

ve(l) ve(l)

NAME
ve - version control

SYNOPSIS
ve [-a] [-echar] [-s] [-t] [keyword=value] ...

DESCRIPTION

1

The ve command copies lines from the standard input to the stan­
dard output under control of its arguments and control statements
encountered in the standard input. In the process of performing
the copy operation, user declared keywords may be replaced by
their string value when they appear in plain text and/or control
statements.

The copying of lines from the standard input to the standard out­
put is conditional, based on tests (in control statements) of key­
word values specified in control statements or as ve command ar­
guments.

A control statement is a single line beginning with a control char­
acter, (unless the -t keyletter is used, in which case, all characters
up to and including the first tab are ignored , and what follows be­
gins the Gontrol statement (see below». The default control char­
acter is colon (:). This can be changed by the -e keyletter (see
below). Input lines beginning with a backslash (\) followed by a
control character are not control lines and are copied to the stan­
dard output with the backslash removed. Lines beginning with a
backslash followed by a noncontrol character are copied in their
entirety.

A keyword is composed of 9 or less alphanumerics; the first must
be alphabetic. A value is any ASCII string that can be created
with ed(I); a numeric value is an unsigned string of digits. Key­
word values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword
surrounded by control characters is encountered on a version con­
trol statement. The -a key letter (see below) forces replacement
of keywords in all lines of text. An un interpreted control charac­
ter may be included in a value by preceding it with \. If a literal \
is desired, then it too must be preceded by \.

Keyletter Arguments
-a Forces replacement of keywords surrounded by con­

trol characters with their assigned value in all text
lines and not just in ve statements.

February, 1990
RevisionC

ve(l)

-t

ve(l)

All characters from the beginning of a line up to and
including the first tab character are ignored for the
purpose of detecting a control statement. If one is
found, all characters up to and including the tabs are
discarded.

-echar Specifies a control character to be used in place of : .

-s Silences warning messages (not error) that are nor-
mally printed on the diagnostic output.

Version Control Statements
: del keyword [, ... , keyword]

Used to declare keywords. All keywords must be declared.

: asg keyword=value
Used to assign values to keywords. An asg statement over­
rides the assignment for the corresponding keyword on the
ve command line and all previous asg's for that keyword.
Keywords declared, but not assigned values have null values.

: if condition

:end
Used to skip lines of the standard input. If the condition is
true all lines between the if statement and the matching end
statement are copied to the standard output. If the condition
is false, all intervening lines are discarded, including control
statements. Note that intervening if statements and match­
ing end statements are recognized solely for the purpose of
maintaining the proper if-end matching.

The syntax of a condition is:

<cond>
<or>
<and>
<exp>

["not"] <or>
<and> I <and> "I" <or>
<exp> I <exp> "&" <and>
" (" <or> ")" I <value> <op>

<value>
<op> ""= "=" I "!=" I "<" I ">"
<value> :: = <arbitrary ASCII string> I <numeric

string>

The available operators and their meanings are:

equal

February, 1990 2
Revision C

vc(l) vc(1)

3

! = not equal
& and
I or
> greater than
< less than
(used for logical groupings
not may only occur immediately after the if,

and when present, inverts the value of the en­
tire condition

The> and < operate only on unsigned integer values (e.g., :
012 > 12 is false). All other operators take strings as ar­
guments (e.g.,: 012 ! = 12 is true). The precedence of
the operators (from highest to lowest) is:

&

I

!= > <
all of equal precedence

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by
at least one blank or tab.

: : text

:on

Used for keyword replacement on lines that are copied to the
standard output. The two leading control characters are re­
moved, and keywords surrounded by control characters in
text are replaced by their value before the line is copied to
the output file. This action is independent of the -a
keyletter.

:off
Turn on or off keyword replacement on all lines.

: ctl char
Change the control character to char.

: msg message
Prints the given message on the diagnostic output.

: err message
Prints the given message followed by:

ERROR: err statement on line ... (915)

February, 1990
Revision C

vc(1) vc(l)

on the diagnostic output. vc halts execution, and returns an exit
code of I.

EXAMPLES
If you have a file named note containing:

:dcl NAME,PLACE
:NAME:,
Just a note to remind you that we have a meeting
scheduled Monday morning at :PLACE:.

the command

vc -a NAME=Joe PLACE=University < note

will produce
Joe,
Just a note to remind you that we have a meeting
scheduled Monday morning at the University.

FILES
/usr/bin/vc

SEE ALSO
admin(I), cdc(I), comb(1), del ta(1), ed(1), get(I),
help(1), rmdel(1), prs(I), sact(I), sccs(l), sccsdiff(I),
unget(I), val(I), what(I), sccsfile(4).
"sees Reference" in AIUX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Use help(l) for explanations.

EXIT CODES
O-normal
1- any error

February, 1990
Revision C

4

vedit(l)

1

See vi(l)

vedit(l)

February, 1990
Revision C

version(l) version(l)

NAME
version - reports version number of files

SYNOPSIS
version name ...

DESCRIPTION
version takes a list of files and reports the version number. If
the file is not a binary ~ it reports:

not a binary

If no version number is associated with the file~ it reports:

No version header

version also reports the object file format of the file~ i.e.~ either

Coff object file format

or

Old a.out object file format.

version is useful for determining which version of the current
program you are running.

EXAMPLES
The command

version /bin/version

prints the version number of the version program.

FILES
/bin/version

SEE ALSO
strings(1)~ what(l).

February~ 1990
Revision C

1

vi(l) vi(l)

NAME
vi, view, vedi t - screen-oriented (visual) display editor

SYNOPSIS
vi [+command] [-1] [-r [file]] [-R] [-t tag] [-wn] [-x]
name ...

view [+command] [-1] [-r [file]] [-R] [-t tag] [-wn] [-x]
name ...

vedi t [+command] [-1] [-r [file]] [-R] [-t tag] [-wn] [-x]
name ...

DESCRIPTION
vi (visual) is a display-oriented text editor based on an underlying
line editor ex(l}. It is possible to use the command mode of ex
from within viand vice versa.

When using vi, changes you make to the file are reflected by
what you see on your terminal screen. The position of the cursor
on the screen indicates the position within the file.

FLAG OPTIONS

1

The following flag options are interpreted by vi.

-1 LISP mode; indents appropriately for lisp
code, the (), { }, [[, and]] commands in vi
and open are modified to have meaning for lisp.

-r[file]

-R

-t tag

-wn

-x

+ command

Recover file after an editor or system crash. If
file is not specified, a list of all saved files will
be printed.

Read only mode; the readonly flag is set,
preventing accidental overwriting of the file.

Edits the file containing the tag and position the
editor at its definition.

Sets the default window size to n. This is use­
ful when using the editor over a slow speed
line.

Encryption mode; a key is prompted for allow­
ing creation or editing of an encrypted file.
This encryption scheme is not secure.

The specified ex command is interpreted be­
fore editing begins.

February, 1990
Revision C

vi(l) vi(1)

The name argument indicates files to be edited.

The view invocation is the same as vi except that the readon-
1 y flag is set

The vedi t invocation is intended for beginners. The repo rt
flag is set to 1, and the showmode and novice flags are set.
These defaults make it easier to initially learn the editor.

VI MODES
Command
Normal and initial mode. Other modes return to command mode
upon completion. EsCAPE is used to cancel a partial command.

Input
Entered by a i A I 0 0 c C s S R. Text may then be
entered. Input mode is normally terminated with Esc character,
or abnormally with interrupt

Last line
Reading input for :, /, ? or !; terminate with RETURN to exe­
cute, interrupt to cancel.

COMMAND SUMMARY
Sample Commands
~.J,I~
h j k 1
i text EsCAPE
cwnew ESCAPE
easEsCAPE
x
dw
dd
3dd
u
zz
:q!RETURN
/ text RETURN
CONTROL-V, CONTROL-D
: ex-cmdRETURN

arrow keys move the cursor
same as arrow keys
insert text
change word to new
pluralize word
delete a character
delete a word
delete a line
... 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

Counts Before vi Commands
Numbers may be typed as a prefix to some commands. They are
interpreted in one of these ways:
line/column number z G

February, 1990 2
Revision C

vi(1) vi(1)

3

scroll amount
repeat effect

CONIROL-D CONIROL-U
most of the rest

Interrupting, Canceling
ESCAPE
interrupt

end insert or incomplete cmd
your interrupt
reprints screen CONIROL-L

CONIROL-R reprint screen if CONIROL-L is ~ key

File Manipulation
: w RETURN write back changes
: qRETURN quit
: q ! RETURN quit, discard changes
: enameRETURN edit file name
: e ! RETURN reedit, discard changes
: e+nameRETURN edit, starting at end
: e +n RETURN edit starting at line n
: e#RETURN edit alternate file
: wnameRETURN write file name
: w ! name RETURN overwrite file name
: shRETuRN run shell, then return
: ! cmdRETURN run cmd, then return
: nRETURN edit next file in arglist
: nargsRETURN specify new arglist
CONTROL-G show current file and line
: t atagRETURN tag file entry tag
~] : ta, following word is tag

In general, any ex or ed command (such as substitute or global)
may be typed, preceded by a colon and followed by a RETURN.

Positioning Within File
CONTROL-F
CONIROL-B
CONTROL-D
CONTROL-U
G
/pat
?pat
n

forward screen
backward screen
scroll down half screen
scroll up half screen
go to specified line (end default)
next line matching pat
prev line matching pat
repeat last / or ?

February, 1990
RevisionC

vie!)

N
/pat/+n
?pat?-n
]]
[[
(

)

{
}
%

Adjusting the Screen
CONTROL-L
CONTROL-R
zRETURN
z-RETURN
z .RETURN
/pat / z-RETURN
zn.RETURN
CONTROL-E
CONTROL-Y

Marking and Returning , ,
, ,
mx
'x
'x

Line Positioning
H
L
M

+

RETURN
J.. or j
i or k

February, 1990
Revision C

vie!)

reverse last / or ?
nth line after pat
nth line before pat
next section/function
previous section/function
beginning of sentence
end of sentence
beginning of paragraph
end of paragraph
find matching () {or}

clear and redraw
retype, eliminate @ lines
redraw, current at window top
... at bottom
... at center
pat line at bottom
use n line window
scroll window down I line
scroll window up 1 line

move cursor to previous context
... at first nonwhite in line
mark current position with letter x
move cursor to mark x
... at first nonwhite in line

top line on screen
last line on screen
middle line on screen
next line, at first nonwhite
previous line, at first non-white
return, same as +
next line, same column
previous line, same column

4

vi(l) vi(l)

5

Character Positioning

o
$
h or ~
1 or ~
CON1ROL-H
space
fx
Fx
tx
Tx

%

first nonwhite
beginning of line
end of line
forward
backward
sameas~

same as ~
find x forward
f backward
up to x forward
back up tox
repeat last f F t or T
inverse of ;
to specified column
find matching ({) or }

VVords,Sentences,Paragraphs
w word forward
b back word
e end of word
) to next sentence
} to next paragraph
(back sentence
{ back paragraph
W blank delimited word
B backw
E to end ofw

Commands for LISP Mode
)
}
(
{

Corrections During Insert
CON1ROL-H
CON1ROL-VV

Forward s-expression
... but do not stop at atoms
Back s-expression
... but do not stop at atoms

erase last character
erase last word

erase your erase, same as CON1ROL-H

February, 1990
RevisionC

vi(l)

kill
\
EsCAPE
interrupt
CONTROL-D
iCONTROL-D
OCONTROL-D
CONTROL-V

Insert and Replace
a
i
A
I
o
o
rx
Rtext EsCAPE

Operators

vi(l)

your kill, erase input this line
quotes CONTROL-H, your erase and kill
ends insertion, back to command
your interrupt, tenninates insert
backtab over autoindent
kill autoindent, save for next
... but at margin next also
quote nonprinting character

append after cursor
insert before cursor
append at end of line
insert before first nonblank
open line below
open line above
replace single character with x
replace characters

Operators are followed by a cursor motion, and affect all text that
would have been moved over. For example, since w moves over a
word, dw deletes the word that would be moved over. Double the
operator, for example, dd to affect whole lines.

d
c
y
<
>

Miscellaneous Operations
C
D

s
S
J

February, 1990
Revision C

delete
change
yank lines to buffer
left shift
right shift
filter through command
indent for uSP

change rest of line (c $)
delete rest of line (d$)
substitute chars (c 1)
substitute lines (c c)
join lines

6

vi(l) vi(l)

x
X
Y

Yank and Put

delete characters (dl)
... before cursor (dh)
yank lines (yy)

put inserts the text most recently deleted or yanked. If a buffer is
named, however, the text in that buffer is put instead.

p
p

"xp
"xy
"xd

Undo, Redo, Retrieve
u
U

"dp

put back text after cursor
put text before cursor
put text from buffer x
yank text to buffer x
delete text into buffer x

undo last change
restore current line
repeat last change
retrieve dth last delete

FILES
/usr/bin/vi
/usr/bin/view
/usr/bin/vedit

SEE ALSO
ex(l).
"Using vi" in the A/UX Text Editing Tools.

BUGS

7

Software tabs using CONTROL-T work immediately after the au­
toindent only.

Left and right shifts on intelligent terminals do not make use of in­
sert and delete character operations in the terminal.

February, 1990
RevisionC

view(l)

February, 1990
Revision C

See vi(l)

view(l)

1

w(1) w(l)

NAME
w - who is on and what they are doing?

SYNOPSIS
w [-h] [-u] [-s] [-1] [user]

DESCRIPTION
w prints a summary of the current activity on the system, including
what each user is doing. The heading line shows the current time
of day, how long the system has been up, the number of users
logged into the system, and the load averages. The load average
numbers give the number of jobs in the run queue averaged over
1,5 and 15 minutes.

The fields output are: the users login name, the name of the tty the
user is on, the time of day the user logged on, the number of
minutes since the user last typed anything, the CPU time used by
all processes and their children on that terminal, the CPU time
used by the currently active processes, the name and arguments of
the current process.

The - h flag option suppresses the heading. The -u flag option
suppresses everything but the heading, as in uptime(1). The-s
flag option asks for a short form of output. In the short form, the
tty is abbreviated, the login time and CPU times are left off, as are
the arguments to commands. -1 gives the long output, which is
the default.

If a user name is included, the output will be restricted to that
user.

FILES
/usr/ucb/w
/etc/utmp
/dev/kmem

SEE ALSO
who(l), finger(l), ps(1), uptime(l), users(1), utmp(1).

BUGS

I

The notion of the current process is muddy. The current algo­
rithm selects the highest numbered process on the terminal that is
not ignoring interrupts, or, if there is none, the highest numbered
process on the terminal. This fails, for example, in critical sec­
tions of programs like the shell and editor, or when faulty pro­
grams running in the background fork and fail to ignore interrupts.
(In cases where no process can be found, w prints -.)

February, 1990
Revision C

w(l) w(l)

The CPU time is only an estimate, in particular, if someone leaves
a background process running after logging out, the person
currently on that terminal is cha rged with the time.

Background processes are not shown, even though they account
for much of the load on the system.

Sometimes processes, typically those in the background, are print­
ed with null or garbaged arguments. In these cases, the name of
the command is printed in parentheses.

w does not know about the new conventions for detection of back­
ground jobs. It will sometimes find a background job instead of
the right one.

February, 1990
Revision C

2

we(l) we(l)

NAME
we - word count

SYNOPSIS
we [-e] [-1] [-w] [name ...]

DESCRIIYfION
we counts lines, words and characters in the named files, or in the
standard input if no names appear. It also keeps a total count for
all named files. A word is a maximal string of characters delimit­
ed by spaces, tabs, or newlines.

The flag options 1, w, and e may be used in any combination to
specify that a subset of lines, words, and characters are to be re­
ported. The default is -lwe.

When names are specified on the command line, they will be
printed along with the counts.

EXAMPLES
we filea fileb filee

reports the number of lines, words, and characters in each of the
files, as well as the totals.

FILES
/bin/we

SEE ALSO
sum(l), sumdir(l).

1 February, 1990
Revision C

what(1) what(l)

NAME
wha t - identify sees files

SYNOPSIS
what [-s] file ...

DESCRIPTION
what searches the given files for all occurrences of the pattern
that get (1) substitutes for % Z % (this is @ (=If) at this printing) and
prints out what follows until the first ", >, newline, \, or null
character. For example, if the C program in file f . c contains

char ident [] = "@ (=If) identification information" ;

and f. c is compiled to yield f. a and a. out, then the command

what f.c f.o a.out

will print

f.c:

f.o:

a.out:

ide ntification information

identification information

ide ntification information

wha t is intended to be used in conjunction with the sees com­
mand get(l), which inserts identifying information automatical­
ly, but it can also be used where the information is inserted manu­
ally. Only one flag option exists:

-s Quit after finding the first occurrence of
pattern in each file.

EXAMPLES
If testl . c has the following string:

char v[] = "@(=If)l testl.c 2";

typing

what testl.c

would print the following:

testl.c:
1 testl.c 2

FILES
/usr/bin/what

February, 1990
Revision C

what(1) what(l)

SEE ALSO
adrnin(1), cdc(1), comb(1), del ta(I), get(I), help(I),
prs(I), rmdel(1), sact(I), sccs(1), sccsdiff(I),
unget(1), val(1), sccsfile(4).
"sees Reference" in A/UX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
Exit status is 0 if any matches are found, otherwise 1. Use
help(l) for explanations.

BUGS

2

It is possible that an unintended occurrence of the pattern @ (*)
could be found just by chance, but this causes no harm in nearly
all cases.

February, 1990
Revision C

whatis(1) whatis(1)

NAME
whatis - display a brief description for the named manual page
entry

SYNOPSIS
whatis command ...

DESCRIPTION
whatis looks up a given command and gives the header line
from the manual section. You may then run the man(1) command
to get more information. If the line starts with

name (section)

you may type

man section name

to get the documentation for it. For instance, if you type

whatis ed

you will see

ed, red (1) - text editor

This tells you that the section for ed is 1. To see the manual entry
for ed, you may then type

man 1 ed

and the entire entry will be printed.

FILES
/usr/ucb/whatis
/usr/lib/whatis

SEE ALSO
apropos(l), man(I), whereis(I), which(I).

February, 1990
Revision C

whereis(l) whereis(1)

NAME
whereis - locate source, binary, and online help file for a
command

SYNOPSIS
whereis [-b] [-m] [-s] [-u] [-B dir [-f]] [-M dir [-f]] [­
S dir [-f]] name ...

DESCRIPTION
w he re is locates source/binary and manual sections for specified
files. The supplied names are first stripped of leading pathname
components and standard extensions for source files and manual
entries, for example, . e and . 1m. Prefixes of s. resulting from
use of source code control are also dealt with. whereis then at­
tempts to locate the desired program in a list of standard places. If
any of the -b, -s, or -rn flags are given, then whereis searches
only for binaries, sources, or manual sections respectively (or any
two thereof). The -u flag may be used to search for unusual en­
tries. A file is said to be unusual if it does not have one entry of
each requested type. Thus whereis -m -u * asks for those
files in the current directory which have no documentation.

Finally, the -B, -M, and -s flags may be used to change or other­
wise limit the places where whereis searches. The -f file flag
is used to tenninate the last such directory list and signal the start
of file names.

EXAMPLES
The following finds all the files in I us r Ibin which are not do­
cumented in lusr Iman/man1 with source in lusr I srel emd:

cd /usr/ucb
whereis -u -M /usr/man/manl -S /usr/src/cmd -f *

FILES
lusr/bin/whereis
lusrlsre/*
lusr/eatman/man/*
Ibin
Ilib
lete
lusr/bin
lusr/lib
lusr/ete
lusr/ueb

1 February, 1990
Revision C

whereis(l) whereis(1)

SEE ALSO
whatis(l), which(l).

BUGS
Since the program uses chdir(2) to run faster, pathnames given
with the -M, -S, and -B must be full; that is, they must begin with
a /.

February, 1990
Revision C

2

which(l) which(l)

NAME
which - display the directory path to a file by interpreting
PATH and alias settings

SYNOPSIS
which [name ...]

DESCRIPTION
w hi ch takes a list of names and looks for the files which would
be executed had these names been given as commands. Each ar­
gument is expanded if it is aliased, and is searched for along the
user's path. Both aliases and paths are taken from the user's
. cshrc file.

Note: which(l) Operates only with csh(l).

FILES
/usr/ucb/which
- / . cshrc source of aliases and path values

SEE ALSO
whereis(l), which(l).

DIAGNOSTICS

1

A diagnostic is given for names which are aliased to more than a
single word, or if an executable file with the argument name was
not found in the path.

February, 1990
Revision C

who(l) who(l)

NAME
who - who is on the system?

SYNOPSIS
who [-a] [-b] [-d] [-H] [-1] [-p] [-q] [-r] [-5] [-t] [-T] [-u]
[file]

who am i

who am I

DESCRIPTION
who can list the user's name, termina1line, login time, elapsed
time since activity occurred on the line, and the process ID of the
command interpreter (shell) for each current A/UX system user.
It examines the /etc/utmp file to obtain its information. Iffile
is given, that file is examined. Usually, file will be /etc/wtmp,
which contains a history of all the logins since the file was last
created.

who with am i or am I added on identifies the invoking user.

Except for the default -5 flag option, the general format for output
entries is:

name[state] line time activity pid [comment] [exit]

With flag options, who can list logins, logoffs, reboots, and
changes to the system clock, as well as other processes spawned
by the ini t process. These flag options are:

-a This flag option processes / et c / u tmp or the named file with
all options turned on.

-b This flag option indicates the time and date of the last reboot.

-d This flag option displays all processes that have expired and
not been respawned by ini t.

-H This flag option will print column headings above the regular
output.

-1 This flag option lists only those lines on which the system is
waiting for someone to login. The name field is LOG I N in
such cases. Other fields are the same as for user entries ex­
cept that the state field does not exist.

-p This flag option lists any non-get t y process which is
currently active and has been previously spawned by ini t.
The name field is the name of the program executed by ini t
as found in /etc/inittab. The state, line, and activity

February, 1990 1
Revision C

who(l) who(l)

2

fields have no meaning. The comment field shows the id field
of the line from /etc/inittab that spawned this process.
See ini t tab(4). The exit field appears for dead processes
and contains the termination and exit values (as returned by
wai t(2)), of the dead process. This can be useful in deter­
mining why a process terminated.

-q This is a quick who, displaying only the names and the
number of users currently logged on. When this flag option is
used, all other flag options are ignored.

-r This flag option indicates the current run-level of the ini t
process.

-s This flag option is the default and lists only the name, line,
time, and remote host (if any) fields.

-t This flag option indicates the last change to the system clock
(via the date(1) command) by root. See su(l).

-T This flag option is the same as the -u flag option, except that
the state of the terminal line is printed. The state describes
whether someone else can write to that terminal. A + appears
if the terminal is writable by anyone; a - appears if it is not.
root can write to all lines having a + or a - in the state field.
If a bad line is encountered, a ? is printed.

-u This flag option lists only those users who are currently
logged in. The name is the user's login name. The line is the
name of the line as found in the directory / dev. The time is
the time that the user logged in. The activity is the number of
hours and minutes since activity last occurred on that particu­
lar line. A dot (.) indicates that the terminal has seen activity
in the last minute and is therefore "current". If more than
twenty-four hours have elapsed or the line has not been used
since boot time, the entry is marked old. This field is useful
when trying to determine whether a person is working at the
terminal or not. The pid is the process ID of the user's shell.
The comment is the comment field associated with this line as
found in /etc/inittab (see inittab(4)). This can con­
tain information about where the terminal is located, the tele­
phone number of the dataset, type of terminal if hard-wired,
etc.

February, 1990
RevisionC

who(I) who(l)

EXAMPLES
who am i

reports the name under which you are currently logged in.

FILES
Ibin/who
letc/utmp
letc/wtmp
letc/inittab

SEE ALSO
date(I), login(I), mesg(l), ps(I), su(I), users(I), w(I),
whoami(I), ini t(IM), wai t(2), ini t tab(4), utmp(4).

February, 1990
Revision C

3

whoami(l) whoami(l)

NAME
whoami - print effective current user ID

SYNOPSIS
whoami

DESCRIPTION
whoami prints who you are. It works even if you are logged in as
superuser, while who am i does not since it uses / etc/utmp.

FILES
/usr/bin/whoami
/etc/passwd

SEE ALSO
id(l), who(l).

1

Name data base

February, 1990
Revision C

write(l) write(l)

NAME
w r i t e - write to another user

SYNOPSIS
wri te user [line]

DESCRIPTION
wri te copies lines from your terminal to that of another user.
When first called, it sends the message:

Message fromyourname (tty??) [date] ...

to the person you want to talk to. When it has successfully com­
pleted the connection, it also sends two bells to your own terminal
to indicate that what you are typing is being sent.

The recipient of the message should write back at this point.
Communication continues until an end of file is read from the ter­
minal or an interrupt is sent, or the recipient has executed "mesg
n". At that point write writes EaT on the other terminal and
exits.

If you want to write to a user who is logged in more than once, the
line argument can be used to indicate which line or terminal to
send to (e.g., tty 00); otherwise, the first writable instance of the
user found in / et c / u tmp is assumed and the following message
posted:

u~r is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the
mesg(l) command. Writing to others is normally allowed by de­
fault. Certain commands, in particular nroff(l) and pr(l) disal­
low messages in order to prevent interference with their output.
However, if the user has superuser permissions, messages can be
forced onto a write-inhibited terminal.

If the character ! is found at the beginning of a line, w r it e calls
the shell to execute the rest of the line as a command.

The following protocol is suggested for using write: when you
first wri te to another user, wait for them to wri te back before
starting to send. Each person should end a message with a distinc­
tive signal (i.e., (0) for' 'over' ') so that the other person knows
when to reply. The signal (00) (for "over and out") is suggest-

February, 1990
Revision C

1

write(l) write(1)

ed when conversation is to be terminated.

EXAMPLES
write judy tty7

writes to user "judy" on terminal 7, unless messages have been
refused with mesg(I).

FILES
/bin/write
/etc/utmp
/bin/sh

SEE ALSO
mail(I), mesg(I), nroff(I), pr(I), sh(I), talk(IN),
who(I), wall(IM).

DIAGNOSTICS

2

user is not logged in if the person you are trying to
w r i t e to is not logged in.

Permission denied if the person you are trying to
wri te to denies that permission
(with mesg).

Warning: cannot respond, set mesg -y
if your terminal is set to mesg n
and the recipient cannot respond
to you.

Can no longer write to user
if the recipient has denied per­
mission (mesg n) after you had
started writing.

February, 1990
RevisionC

xargs(l) xargs(l)

NAME
xargs - construct argument list and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
xargs combines the fixed initial-arguments with arguments read
from standard input to execute the specified command one or more
times. The number of arguments read for each command invoca­
tion and the manner in which they are combined are determined
by the flags specified.

command, which may be a shell file, is searched for, using one's
$PATH. If command is omitted, /bin/ echo is used.

Arguments read in from standard input are defined to be contigu­
ous strings of characters delimited by one or more blanks, tabs, or
new lines; empty lines are always discarded. Blanks and tabs may
be embedded as part of an argument if escaped or quoted. Char­
acters enclosed in quotes (single or double) are taken literally, and
the delimiting quotes are removed. Outside of quoted strings, a
backslash (\) will escape the next character.

Each argument list is constructed starting with the initial­
arguments, followed by some number of arguments read from
standard input (Exception: see - i flag option). Flag options - i,
-1, and -n determine how arguments are selected for each com­
mand invocation. When none of these flag options are coded, the
initial-arguments are followed by arguments read continuously
from standard input until an internal buffer is full, and then com­
mand is executed with the accumulated arguments. This process
is repeated until there are no more arguments. When there are flag
option conflicts (for example, -1 versus -n), the last flag option
has precedence. Flag option values are:

-lnumber command is executed for each nonempty number
lines of arguments from standard input. The last in­
vocation of command will be with fewer lines of ar­
guments if fewer than number remain. A line is con­
sidered to end with the first newline unless the last
character of the line is a blank or a tab; a trailing
blank/tab signals continuation through the next
nonempty line. If number is omitted, 1 is assumed.
Flag option -x is forced.

February, 1990 1
Revision C

xargs(l) xargs(l)

- ireplstr Insert mode: command is executed for each line
from standard input, taking the entire line as a single
argument, inserting it in initial-arguments for each
occurrence of replstr. A maximum of 5 arguments in
initial-arguments may each contain one or more in­
stances of replstr. Blanks and tabs at the beginning
of each line are thrown away. Constructed argu­
ments may not grow larger than 255 characters, and
flag option -x is also forced. {} is assumed for
replstr if not specified.

-nnumber Execute command using as many standard input ar­
guments as possible, up to number arguments max­
imum. Fewer arguments will be used if their total
size is greater than size characters, and for the last in­
vocation if there are fewer than number arguments
remaining. If flag option -x is also coded, each
number arguments must fit in the size limitation, else
xargs terminates execution.

-t Trace mode: The command and each constructed ar­
gument list are echoed to file descriptor 2 just prior to
their execution.

-p Prompt mode: The user is asked whether to execute
command at each invocation. Trace mode (-t) is
turned on to print the command instance to be exe­
cuted, followed by a ?.. prompt. A reply of y (op­
tionally followed by anything) will execute the com­
mand; anything else, including just a carriage return,
skips that particular invocation of command.

-x Causes xargs to terminate if any argument list
would be greater than size characters; -x is forced by
the flag options - i and -1. When none of the flag
options -i, -1, or -n are coded, the total length of
all arguments must be within the size limit.

-ssize The maximum total size of each argument list is set
to size characters; size must be a positive integer less
than or equal to 470. If - s is not coded, 470 is taken
as the default. Note that the character count for size
includes one extra character for each argument and
the count of characters in the command name.

2 February, 1990
RevisionC

xargs(1) xargs(1)

-eeofstr eofstr is taken as the logical end-of-file string. Un­
derbar U is assumed for the logical EOF string if -e
is not coded. The value -e with no eofstr coded
turns off the logical EOF string capability (underbar
is taken literally). xargs reads standard input until
either end-of-file or the logical EOF string is encoun­
tered.

xargs will terminate if either:

it cannot execute command

command returns a -1 exit status.

When command is a shell program, it should explicitly exit (see
sh(1» with an appropriate value to avoid accidentally returning
with -1 .

EXAMPLES
Is $1 I xargs -i -t mv $1/{} $2/{}

will move all files from directory $1 to directory $ 2, and echo
each move command just before doing it.

(logname; date; echo $0 $*) I xargs »log

will combine the output of the parenthesized commands onto one
line, which is then echoed to the end of file 1 og.

Is I xargs -p -1 ar r arch
Is I xargs -p -1 I xargs ar r arch

causes the user to be asked which files in the current directory are
to be archived and archives them into arch one at a time in the
first instance, or as in the second instance, many at a time.

echo $* I xargs -n2 diff

will execute diff(1) with successive pairs of arguments original­
ly typed as shell arguments.

FILES
/usr/bin/xargs

SEE ALSO
csh(1), ksh(1), sh(l).

February,1990
Revision C

3

xstr(l) xstr(l)

NAME
xstr - extract strings from C programs to implement shared
strings

SYNOPSIS
xstr [-] [-c] [file]

DESCRIPTION

1

xstr maintains a file strings into which strings in component
parts of a large program are hashed. These strings are replaced
with references to this common area. This serves to implement
shared constant strings, most useful if they are also read-only.

The command

xstr -c name

will extract the strings from the C source in name, replacing string
references by expressions of the form (&xstr[numberD for some
number. An appropriate declaration of xstr is prefixed to the
file. The resulting C text is placed in the file x. c, to then be com­
piled. The strings from this file are placed in the strings data base
if they are not there already. Repeated strings and strings which
are suffices of existing strings do not cause changes to the data
base.

After all components of a large program have been compiled a file
xs. c declaring the common xstr space can be created by a
command of the form

xstr

This xs. c file should then be compiled and loaded with the rest
of the program. If possible, the array can be made read-only
(shared) saving space and swap overhead.

x s t r can also be used on a single file. A command

xstr name

creates files x . c and xs . c as before, without using or affecting
any strings file in the same directory.

It may be useful to run xstr after the C preprocessor if any mac­
ro definitions yield strings or if there is conditional code which
contains strings which may not, in fact, be needed. xstr reads
from its standard input when the argument - is given. An ap­
propriate command sequence for running x s t r after the C
preprocessor is:

February, 1990
Revision C

xstr(1) xstr(1)

cc -E name.c I xstr -c -
cc -c x.c
mv x. 0 name. 0

xstr does not touch the file strings unless new items are added,
thus make can avoid remaking xs. 0 unless truly necessary.

FILES
/usr/bin/xstr
strings
x.c
xs.c
/tmp/xs*

SEE ALSO

Data base of strings
Massaged C source
C source for definition of array xstr
Temp file when "xstr name" doesn't
touch strings

mkstr(1), strings(I).

BUGS
If a string is a suffix of another string in the data base, but the
shorter string is seen first by xstr both strings will be placed in
the data base, when just placing the longer one there will do.

February, 1990
Revision C

2

yacc(l) yacc(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-d] [-1] [-t] [-v] grammar

DESCRIPTION

1

yacc converts a context-free grammar into a set of tables for a
simple automaton which executes an 1r(l) parsing algorithm.
The grammar may be ambiguous; specified precedence rules are
used to break ambiguities.

The output file, y . tab. c, must be compiled by the C compiler to
produce a program yyparse. This program must be loaded with
the lexical analyzer program, yy1ex, as well as main and yyer­
ror, an error handling routine. These routines must be supplied
by the user; 1ex(l) is useful for creating lexical analyzers usable
by yacc.

If the -v flag is given, the file y. output is prepared, which con­
tains a description of the parsing tables and a report on conflicts
generated by ambiguities in the grammar.

If the -d
r
flag is used, the file y. tab. h is generated with the

#define statements that associate the yacc-assigned "to­
ken codes" with the user-declared "token names" This allows
source files other than y . tab. c to access the token codes.

If the -1 flag is given, the code produced in y. tab. c will not
contain any #line constructs. This should only be used after the
grammar and the associated actions are fully debugged.

Runtime debugging code is always generated in y . tab. c under
conditional compilation control. By default, this code is not in­
cluded when y. tab. c is compiled. However, when yacc's -t
flag option is used, this debugging code will be compiled by de­
fault. Independent of whether the -t flag option was used, the
runtime debugging code is under the control of YYDEBUG, a pre­
processor symbol. If YYDEBUG has a nonzero value, then the de­
bugging code is included. If its value is zero, then the code will
not be included. The size and execution time of a program pro­
duced without the runtime debugging code will be smaller and
slightly faster.

February, 1990
RevisionC

yacc(l) yacc(l)

EXAMPLES
yacc filel.y

invokes yacc to process file filel. yin yacc-format.

FILES
/bin/yacc
y.output
y.tab.c
y.tab.h
yacc. tmp,yacc. debug,yacc. acts (temporary files)
/usr/lib/yaccpar

SEE ALSO
lex(1), malloc(3X).
"yacc Refrence" in AIUX Programming Languages and Tools,
Volume 2.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is report­
ed on the standard error output; a more detailed report is found in
the y. output file. Similarly, if some rules are not reachable
from the start symbol, this is also reported.

BUGS
Because file names are fixed, at most one yacc process can be ac­
tive in a given directory at a time.

February, 1990
Revision C

2

yes(l) yes(l)

NAME
ye s - generate y entries in response to requests for input

SYNOPSIS
ye s [expletive]

DESCRIPTION
yes repeatedly outputs "y" or if expletive is given, that is output
repeatedly. A multiple word expletive must be enclosed in quotes.
Termination is by the interrupt character (by default, CONTROL-C
in the NUX standard distribution).

FILES
/usr/ucb/yes

1 February, 1990
RevisionC

ypcat(l) ypcat(1)

NAME
ypca t -list the contents of the named yP map

SYNOPSIS
ypcat [-k] [-t] [-d domainname] mname

ypcat -x

DESCRIPTION
ypcat lists the contents of the yellow pages (YP) map specified
by mname, which may be either a mapname or a map "nick­
name." Since ypcat uses the yP network services, no yP

server is specified.

Suppose you want to look at the system password file. Each
machine has a file /etc/passwd, containing only a small
amount of information. The network-wide password database is
served by the YP, and holds information in a map named
passwd. byname. whose abbreviated name is passwd. Thus.
to see the system passwords, you type:

ypcat passwd

Here is a list of abbreviated mapnames, full mapnames, and
corresponding system files:

passwd pwd.nm /etc/passwd
group grp.nm /etc/group
hosts hst.ad /etc/hosts
networks ntw.ad /etc/networks
services svc.nm /etc/services
protocols ptc.nr /etc/protocols
netgroup netg /etc/netgroup

Note: This implementation uses shorter abbreviated names
than other implementations due to an 8 character filename
limitation.

Refer to ypfiles(4) and ypserv(lM) for an overview of the
yellow pages.

FLAG OPTIONS
The following flag options are interpreted by ypcat:

-k Display the keys for those maps in which the values are null
or the key is not part of the value. (None of the maps derived
from files that have an ASCII version in / etc fall into this
class.)

February, 1990
Revision C

1

ypcat(l) ypcat(l)

-t Inhibit translation of mname to mapname. For example, yp­
cat -t passwd will fail because there is no map named
passwd, whereas ypcat passwd will be translated to
ypcat passwd.byname.

-d Specify a domain other that the default domain. The default
domain is returned by domainname.

-x Display the map nickname table. This lists the nicknames
(mnames) the command knows of, and indicates the map­
name associated with each nickname.

FILES
/usr/bin/ypcat

SEE ALSO

2

domainname(1), ypmatch(l), ypserv(lM), ypfiles(4).
"Installing the Yellow Pages" in AIUX Network System Adminis­
tration.

February, 1990
Revision C

ypmatch(l) ypmatch(l)

NAME
. ypma t ch -list the value of keys in a yP map

SYNOPSIS
ypmatch [-ddomain] [-k] [-t] key ... mname

ypmatch -x

DESCRIPTION
ypma t ch lists the values associated with one or more keys from
the yellow pages (YP) map (database) specified by a mname,
which may be either a mapname or a map nickname.

Multiple keys can be specified; the same map will be searched for
all . The keys must be exact values insofar as capitalization and
length are concerned. No pattern matching is available. If a key
is not matched, a diagnostic message is produced.

FLAG OPTIONS
The following flag options are interpreted by ypmatch:

-d Specify a domain other than the default domain.

-k Before displaying the value of a key, display the key it-
self, followed by a colon (:). This is useful only if the
keys are not duplicated in the values, or you've specified
so many keys that the output could be confusing.

-t Inhibit translation of nickname to mapname. For exam­
ple,

ypmatch -t zippy passwd

will fail because there is no map named passwd, while

ypmatch zippy passwd

will be translated to

ypmatch zippy passwd.byname

-x Display the map nickname table. This lists the nick­
names (mnames) the command knows of, and indicates
the mapname associated with each nickname.

FILES
/usr/bin/ypmatch

February, 1990
Revision C

1

ypmatch(l)

SEE ALSO
ypcat(l), ypfiles(4).
AIUX Network System Administration.

2

ypmatch(l)

February, 1990
Revision C

yppasswd(l) yppasswd(l)

NAME
yppasswd- change login password in yellow pages

SYNOPSIS
yppasswd [name]

DESCRIPTION
yppasswd changes (or installs) a password associated with the
user name (your own name by default) in the yellow pages. The
yellow pages password may be different from the one on your
own machine.

yppasswd prompts for the old yellow pages password and then
for the new one. The caller must supply both. The new password
must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a
sufficiently rich alphabet and at least six characters long if mono­
case. These rules are relaxed if you are insistent enough.

Only the owner of the name or the superuser may change a pass­
word; in either case you must prove you know the old password.

FILES
/usr/bin/yppasswd

SEE ALSO
passwd(l), yppasswdd(lM), ypfiles(4).
A/UX Network System Administration.

BUGS
The update protocol passes all the information to the server in one
rpc call, without ever looking at it. Thus, if you type in your old
password incorrectly, you will not be notified until after you have
entered and verified your new password.

February, 1990
Revision C

1

ypwhich(l) ypwhich(l)

NAME
ypwhich - which host is the yP server or map master?

SYNOPSIS
ypwhich [-d[domain]] [-VI] [hostname]

ypwhich [-d[domain]] [-V2] [hostname]

ypwhich [-t mapname] [-d domain] -ro [mname]

ypwhich -x

DESCRIPTION
ypwhich tells which yP server supplies yellow pages services to
a yP client, or which is the master for a map. If invoked without
arguments, it gives the yP server for the local machine. If host­
name is specified, that machine is queried to find out which YP
master it is using.

Refer to ypfiles(4) and ypserv(lM) for an overview of the
yellow pages.

FLAG OPTIONS

1

The following flag options are interpreted by ypwhich:

-d [domain] Use domain instead of the default domain.

-VI

-V2

-t mapname

-m [mname]

Which server is serving version 1 yP protocol­
speaking client processes?

Which server is serving version 2 yP protocol
client processes?

If neither version is specified, ypwhich at­
tempts attempts to locate the server that supplies
the (current) version 2 services. If there is no
version 2 server currently bound, ypwhich
then attempts to locate the server supplying the
version 1 services. Since yP servers and yP

clients are both backward compatible, the user
need seldom be concerned about which version
is currently in use.

Inhibit nickname translation; useful if there is a
mapname identical to a nickname.

Find the master YP server for a map. No host­
name can be specified with -ro. mname can be a
mapname, or a nickname for a map.

February, 1990
RevisionC

ypwhich(1)

-x

ypwhich(l)

Display the map nickname table. This lists the
nicknames (mnames) the command knows of,
and indicates the mapname associated with each
nickname.

FILES
/usr/bin/ypwhich

SEE ALSO
rpcinfo(lM), ypset(lM), ypserv(1M), ypfiles(4).
AIUX Network System Administration.

February, 1990
Revision C

2

zcat(l) zcat(l)

See compress(l)

1 February, 1990
RevisionC

Table of Contents

Section 6: Games

intro(6) ... introduction to games
aliens(6) .. alien invaders attack the earth
ar i thmet i c(6) provide drill in number facts
autorobots(6) escape from the automatic robots
back(6) .. the game of backgammon
bcd(6) simulate a punched card corresponding to a text argument
bj(6) .. the game of blackjack
chase(6) ... try to escape the killer robots
craps(6) .. the game of craps
cribbage(6) .. the card game cribbage
cubic(6) .. see ttt(6)
fish(6) .. play "Go Fish"
fortune(6) print a random, hopefully interesting, adage
hangman(6) .. guess the word
life(6) ... play the game of life
mastermind(6) play the game of Mastennind
maze(6) .. generate a maze
moo(6) ... guessing game
number(6) convert Arabic numerals to English
quiz(6) ... test your knowledge
rain(6) ... animated raindrops display
robots(6) ... escape from the robots
trek(6) .. trekkie game
ttt(6) ... tic-tac-toe
twinkle(6) .. twinkle stars on the screen
worm(6) .. play the growing wonn game
worms(6) animate wonns on a display terminal
wump(6) ... the game ofhunt-the-wumpus

Section 6

intro(6) intro(6)

NAME
intro - introduction to games

DESCRIPTION
This section describes the recreational and educational programs
found in the directory /usr/games.

February, 1990
Revision C

1

aliens(6) aliens(6)

NAME
aliens - alien invaders attack the earth

SYNOPSIS
/usr/games/aliens

DESCRIPTION
This is an NUX version of Space Invaders. The program is pretty
much self-documenting.

FILES
/usr/games/aliens
/usr/games/alienslog

BUGS
The program is a CPU hog. It needs to be rewritten. It doesn't do
well on terminals that run slower than 9600 baud.

February, 1990
Revision C

ari thrnetic(6) ari thrnetic(6)

NAME
ari thrnetic - provide drill in number facts

SYNOPSIS
/usr/garnes/arithrnetic [+-x/] [range]

DESCRIPTION
ari thrnetic types out simple arithmetic problems, and waits
for an answer to be typed in. If the answer is correct, it types back
Right!, and a new problem. If the answer is wrong, it replies
Wha t ?, and waits for another answer. Every twenty problems, it
publishes statistics on correctness and the time required to answer.

To quit the program, type an interrupt.

The first optional argument determines the kind of problem to be
generated; +, -, x, and / respectively cause addition, subtraction,
multiplication, and division problems to be generated. One or
more characters can be given; if more than one is given, the dif­
ferent types of problems will be mixed in random order; default is
+-.
range is a decimal number; all addends, subtrahends, differences,
multiplicands, divisors, and quotients will be less than or equal to
the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally
likely to appear. If the respondent makes a mistake, the numbers
in the problem which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give
correct answers, since the learner should, in principle, be able to
calculate them. Thus the program is intended to provide drill for
someone just past the first learning stage, not to teach number
facts de novo. For almost all users, the relevant statistic should be
time per problem, not percent correct.

FILES
/usr/garnes/arithmetic

February, 1990
Revision C

1

autorobots (6) autorobots(6)

NAME
autorobots - escape from the automatic robots

SYNOPSIS
/usr/games/autorobots

DESCRIPTION
The object of the game autorobots is to move around inside of
the box on the screen without getting eaten by the robots chasing
you and without running into any robots or junk heaps. The
robots move continuously.

If a robot runs into another robot or junk heap while chasing you,
they crash and leave a junk heap.

You start out with 10 robots worth 10 points each. If you defeat
all of them, you get 20 robots worth 20 points each. Then 30, and
so forth, until you get eaten!

The game keeps track of the top ten scores and prints them at the
end of the game.

The valid commands are described on the screen.

FILES
/usr/games/autorobots

1 February, 1990
RevisionC

back(6) back(6)

NAME
back - the game of backgammon

SYNOPSIS
/usr/games/back

DESCRIPTION
back is a program which provides a partner for the game of back­
gammon. It is designed to play at three different levels of skill,
one of which you must select. In addition to selecting the
opponent's level, you may also indicate that you would like to roll
your own dice during your turns (for the superstitious players).
You will also be given the opportunity to move first. The practice
of each player rolling one die for the first move is not incorporat­
ed.

The points are numbered 1-24, with 1 being white's extreme inner
table,24 being brown's inner table, 0 being the bar for removed
white pieces and 25 the bar for brown. For details on how moves
are expressed, type y when back asks Instructions? at the
beginning of the game. When back first asks Move?, type ? to
see a list of move options other than entering your numerical
move.

When the game is finished, back will ask you if you want post­
mortem statistics. If you respond with y, back will attempt to ap­
pend to or create a file. backlog in your home directory.

FILES
/usr/games/back
/usr/games/lib/backrules
$HOME/.backlog

BUGS
The only level really worth playing is expert, and it only plays
the forward game.

Doubling is not implemented.

February, 1990
Revision C

1

bed(6) bed(6)

NAME
bed - simulate a punched card corresponding to a text argument

SYNOPSIS
/usr/games/bcd text

DESCRIPTION
bed converts the literal text into a form familiar to old-timers.

This program works best on hard copy terminals.

FILES
/usr/games/bcd

1 February, 1990
Revision C

bj(6) bj(6)

NAME
b j - the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
b j is a serious attempt at simulating the dealer in the game of
black jack (or twenty-one) as might be found in Reno. The fol­
lowing rules apply:

The bet is $2 every hand.

A player natural (black jack) pays $3. A dealer natural
loses $2. Both dealer and player naturals is a push (no mo­
neyexchange).

If the dealer has an ace up, the player is allowed to make an
insurance bet against the chance of a dealer natural. If this
bet is not taken, play resumes as normal. If the bet is taken, it
is a side bet where the player wins $2 if the dealer has a natur­
al and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is allowed
to double. He is allowed to play two hands, each with one
of these cards. (The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may
doubledown. He may double the bet ($2 to $4) and receive
exactly one more card on that hand.

Under normal play, the player may hit (draw a card) as long
as his total is not over twenty-one. If the player bus t s (goes
over twenty-one), the dealer wins the bet.

When the player stands (decides not to hit), the dealer hits
until he attains a total of seventeen or more. If the dealer
busts, the player wins the bet.

If both player and dealer stand, the one with the largest total
wins. A tie is a push.

The machine deals and keeps score. The following questions will
be asked at appropriate times. Each question is answered by y
followed by a newline for yes, or just newline for no.

?
Insurance?
Double down?

February, 1990
Revision C

(means, do you want a hit?)

1

bj(6) bj(6)

Every time the deck is shuffled, the dealer so states and the ac­
tion (total bet) and standing (total won or lost) is printed. To
exit, hit the interrupt key and the action and standing will be print­
ed.

FILES
/usr/games/bj

2 February, 1990
RevisionC

chase(6) chase(6)

NAME
chase - try to escape the killer robots

SYNOPSIS
/usr / games/ chase [nrobots] [nfences]

DESCRIPTION
The object of the game chase is to move around inside of the
box on the screen without getting eaten by the robots chasing you
and without running into anything.

If a robot runs into another robot while chasing you, they crash
and leave a junk heap. If a robot runs into a fence, it is destroyed.

If you can survive until all the robots are destroyed, you have
won!

If you do not specify either nrobots or nfences, chase will prompt
you for them.

The valid commands are described on the screen.

FILES
/usr/games/chase

February, 1990
Revision C

1

craps(6) craps(6)

NAME
craps - the game of craps

SYNOPSIS
/usr/games/craps

DESCRIPTION

1

craps is a form of the game of craps that is played in Las Vegas.
The program simulates the roiler, while the user (the player)
places bets. The player may choose, at any time, to bet with the
roller or with the House. A bet of a negative amount is taken as a
bet with the House, any other bet is a bet with the roller.

The player starts off with a bankroll of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over
the total bankroll is rejected and the program prompts with bet?
until a proper bet is made.

Once the bet is accepted, the roller throws the dice. The following
rules apply (the player wins or loses depending on whether the bet
is placed with the roller or with the House; the odds are even).
The first roll is the roll immediately following a bet:

1. On the first roll:

7 or 11 wins for the roller;
2,3, or 12 wins for the House;
any other number is the point, roll again (Rule 2 ap­
plies).

2. On subsequent rolls:

point roller wins;
7 House wins;
any other number roll again.

If a player loses the entire bankroll, the House will offer to lend
the player an additional $2,000. The program will prompt:

marker?

A ye s (or y) consummates the loan. Any other reply terminates
the game.

February, 1990
RevisionC

craps(6) craps(6)

If a player owes the House money, the House reminds the player,
before a bet is placed, how many markers are outstanding.

If, at any time, the bankroll of a player who has outstanding mark­
ers exceeds $2,000, the House asks:

Repay marker?

A reply of ye s (or y) indicates the player's willingness to repay
the loan. If only 1 marker is outstanding, it is immediately repaid.
However, if more than 1 marker are outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is
entered (or just a carriage return), an appropriate message is print­
ed and the program will prompt with How many? until a valid
number is entered.

If a player accumulates 10 markers (a total of $20,000 borrowed
from the House), the program informs the player of the situation
and exits.

Should the bankroll of a player who has outstanding markers
exceed $50,000, the total amount of money borrowed will be" au­
tomatically repaid to the House.

Any player who accumulates $100,000 or more breaks the bank.
The program then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the
case of bet? or How many?). To exit, send an interrupt. The
program will indicate whether the player won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the
seconds from the time of day. Depending on system usage, these
numbers, at times, may seem strange but occurrences of this type
in a real dice situation are not uncommon.

FILES
/usr/games/craps

February, 1990
Revision C

2

cribbage(6) cribbage(6)

NAME
cribbage - the card game cribbage

SYNOPSIS
/usr/games/cribbage [-r] [-e] [-q] name ...

DESCRIPTION

1

cribbage plays the card game cribbage, with the program play­
ing one hand and the user the other. The program will initially ask
the user if the rules of the game are needed; if so, it will print out
the appropriate section from According to Hoyle with more(I).

cribbage options include:

-e When the player makes a mistake scoring his hand or crib,
provide an explanation of the correct score. (This is especial­
ly useful for beginning players.)

-q Print a shorter form of all messages; this is only recommended
for users who have played the game without specifying this
option.

- r Instead of asking the player to cut the deck, the program will
randomly cut the deck.

cribbage first asks the player whether he wishes to playa short
game ("once around," to 61) or a long game ("twice around," to
121). A response of s will result in a short game, any other
response will playa long game.

At the start of the first game, the program asks the player to cut the
deck to determine who gets the first crib. The user should respond
with a number between 0 and 51, indicating how many cards
down the deck is to be cut. The player who cuts the lower ranked
card gets the first crib. If more than one game is played, the loser
of the previous game gets the first crib in the current game.

For each hand, the program first prints the player's hand, whose
crib it is, and then asks the player to discard two cards into the
crib. The cards are prompted for one per line, and are typed as ex­
plained below.

After discarding, the program cuts the deck (if it is the player's
crib) or asks the player to cut the deck (if it's its crib); in the later
case, the appropriate response is a number from 0 to 39 indicating
how far down the remaining 40 cards are to be cut.

February, 1990
RevisionC

cribbage(6) cribbage(6)

Mter cutting the deck, play starts with the nondealer (the person
who doesn't have the crib) leading the first card. Play continues,
as per cribbage, until all cards are exhausted. The program keeps
track of the scoring of all points and the total of the cards on the
table.

Mter play, the hands are scored. The program requests the player
to score his hand (and the crib, if it is his) by printing out the ap­
propriate cards (and the cut card enclosed in brackets). Play con­
tinues until one player reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent
to typing the lowest legal value; when cutting the deck this is
equivalent to choosing the top card.

Cards are specified as rank followed by suit. The ranks may be
specified as one of: a, 2, 3, 4, 5, 6, 7, 8, 9, t, j, q, and k, or al­
ternatively, one of: ace, two, three, four, five, six,
seven, eight, nine, ten, jack, queen, and king. Suits
may be specified as: s, h, d, and c, or alternatively as: spades,
hearts, diamonds, and clubs. A card may be specified as:
<rank> <suit>, or: <rank> of <suit>. If the single letter rank and
suit designations are used, the space separating the suit and rank
may be left out. Also, if only one card of the desired rank is play­
able, typing the rank is sufficient. For example, if your hand was
"2H, 4D, SC, 6H, JC, KD" and it was desired to discard the King
of Diamonds, any of the following could be typed:

k
king
kd
k d
k of d
king d
king of d
k diamonds
k of diamonds
king diamonds
king of diamonds

FILES
/usr/games/cribbage

February,1990
Revision C

2

cubic(6)

See ttt(6)

1

cubic(6)

February, 1990
RevisionC

fish(6)

NAME
fish - play "Go Fish"

SYNOPSIS
/usr/games/fish

DESCRIPTION

fish(6)

fish plays the game of "Go Fish," a childrens' card game. The
object is to accumulate "books" of 4 cards with the same face
value. The players alternate turns; each tum begins with one
player selecting a card from his hand and asking the other player
for all cards of that face value. If the other player has one or more
cards of that face value in his hand, he gives them to the first
player, and the first player makes another request. Eventually, the
first player asks for a card which is not in the second player's
hand: the second player replies GO FI SH !. The first player then
draws a card from the "pool" of undealt cards. If this is the card
he had last requested, he draws again. When a book is made, ei­
ther through drawing or requesting, the cards are laid down and no
further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4,
5,6,7,8,9,10, j, q, or k when asked. Pressing RETURN gives
you information about the size of my hand and the pool, and tells
you about my books. Saying p as a first guess puts you into
"pro" level; the default is pretty dumb.

FILES
/usr/games/fish

February, 1990
Revision C

1

fortune(6) fortune(6)

NAME
fort une - print a random, hopefully interesting, adage

SYNOPSIS
/usr/games/fortune

DESCRIPTION
fortune prints out a random adage.

FILES

1

/usr/games/fortune
/usr/games/lib/fortunes

February, 1990
Revision C

hangman(6)

NAME
hangman - guess the word

SYNOPSIS
/usr/games/hangman[arg]

DESCRIPTION

hangman(6)

hangman chooses a word at least seven letters long from a dic­
tionary. The user is to guess letters one at a time.

The optional argument arg names an alternate dictionary.

FILES
/usr/games/hangman
/usr/lib/w2006

BUGS
Hyphenated compounds are run together.

February, 1990
Revision C

1

life(6) life(6)

NAME
1 i f e - play the game of life

SYNOPSIS
/usr/games/life [-r]

DESCRIPTION

1

life is a pattern-generating game set up for interactive use on a
video terminal. The way it operates is: You use a series of com­
mands to set up a pattern on the screen and then let it generate
further patterns from that pattern.

The algorithm used is this: For each square in the matrix, look at
it and its eight adjacent neighbors. If the present square is unoc­
cupied and exactly three of its neighboring squares are occupied,
then that square will be occupied in the next pattern. If the present
square is occupied and two or three of its neighboring squares are
occupied, then that square will be occupied in the next pattern.
Otherwise, the present square will not be occupied in the next pat­
tern.

The edges of the screen are normally treated as an unoccupied
void. If you specify the - r option on the command line, the
screen is treated as a torus; that is, the top and bottom lines and the
left and right columns are considered adjacent.

The pattern generation number and the number of occupied
squares are displayed in the lower left comer of the screen.

Following is a list of commands available to the user. In these
descriptions, m and n may be replaced by any numbers.

m, na Add a block of elements. The first number specifies
the horizontal width and the second number specifies
the vertical height. If a number is not specified, the
default is 1.

nc

m,nd

nf

Step through the next n patterns. If no number is
specified, step forever. The operation can be can­
celled by typing an interrupt.

Delete a block of elements. The first number
specifies the horizontal width and the second number
specifies the vertical height. If a number is not
specified, the default is 1.

Generate a little flier at the present location. The
number (modulo 8) determines the direction.

February, 1990
RevisionC

life(6)

m,ng

nh

nj

nk

nl

nn

p

q

m,ny

c
nF

nH

nJ

life(6)

Move to absolute screen location. The first number
specifies the horizontal location and the second
number specifies the vertical location. If a number is
not specified, the default is O.

Move left n steps. If no number is specified, the de­
fault is 1.

Move down n steps. The default is 1.

Move up n steps. The default is 1.

Move right n steps. The default is 1.

Step through the next n patterns. If no number is
specified, generate the next pattern. The operation
can be cancelled by typing an interrupt.

Put the last yanked or deleted block at the present lo­
cation.

Quit.

Yank a block of elements. The first number specifies
the horizontal width and the second number specifies
the vertical height. If a number is not specified, the
default is 1.

Clear the pattern.

Generate a big flier at the present location. The
number (modulo 8) determines the direction.

Move to the left margin.

Move to the bottom margin.

nK Move to the top margin.

nL Move to the right margin.

nCONTROL-H
Move left n steps. If no number is specified, the de­
fault is 1.

nCONTROL-]
Move down n steps. The default is 1.

nCONTROL-K
Move up n steps. The default is 1.

nCONTROL-L

February, 1990
Revision C

Move right n steps. The default is 1.

2

life(6)

CONTROL-R

life(6)

Redraw the screen. This is used for those occasions
when the terminal screws up.

Repeat the last add (a) or delete (d) operation.

Repeat the last move (h, j, k, 1) operation.

FILES
/usr/games/life

BUGS
The following features are planned but not implemented.

m,nS

R

m

e

i

3

Save the selected area in a file.

Restore from a file.

Generate a macro command.

Shell escape.

Edit a file.

Input commands from a file.

February, 1990
Revision C

mastermind(6) mastermind(6)

NAME
mastermind - play the game of Mastennind

SYNOPSIS
/usr/games/mastermind

DESCRIPTION
mastermind plays the board game Mastennind.

The playing field is a number of slots, in which a number of
colored pegs can be placed. The object of the game is to guess a
hidden sequence of colored pegs. Each guess consists of a possi­
ble sequence of colored pegs. The guesser's opponent then
answers with two numbers: the number of pegs in the guess that
exactly match the corresponding pegs in the configuration, and the
number of pegs in the guess that match in color but not in position.
Play continues until the sequence is guessed correctly. Then
players change positions and the program will try to guess your
hidden sequence.

The guesser's opponent gets one point for each guess made. You
have a chance to decide before starting how many slots and how
many colors you want to use. Any time it is your turn to enter a
guess, you can review the board by typing review instead of
your guess.

FILES
/usr/games/mastermind
/usr/games/mrnhow

February, 1990
Revision C

lock file
instruction file

1

maze(6)

NAME
rna ze - generate a maze

SYNOPSIS
/usr/games/maze

DESCRIPTION
maze asks a few questions and then prints a maze.

FILES
/usr/games/maze

BUGS

maze(6)

Some mazes (especially small ones) have no solutions.

1 February, 1990
RevisionC

moo(6)

NAME
moo - guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION

moo(6)

moo is a guessing game imported from England. The computer
picks a number consisting of four distinct decimal digits. The
player guesses four distinct digits being scored on each guess. A
cow is a correct digit in an incorrect position. A bull is a
correct digit in a correct position. The game continues until the
player guesses the number (a score of four bulls).

FILES
/usr/games/moo

February, 1990
Revision C

1

number(6) number(6)

NAME
n umbe r - convert Arabic numerals to English

SYNOPSIS
/usr/games/number

DESCRIPTION
number copies the standard input to the standard output, chang­
ing each decimal number to a fully spelled out version.

FILES
/usr/games/number

1 February, 1990
RevisionC

quiz(6) quiz(6)

NAME
qui z - test your knowledge

SYNOPSIS
/usr/games/quiz [-ifile] [-t] [category1 category2]

DESCRIPTION
qui z gives associative knowledge tests on various subjects. It
asks items chosen from category1 and expects answers from
category2, or vice versa. If no categories are specified, qui z
gives instructions and lists the available categories.

qui z tells a correct answer whenever you type a bare newline.
At the end of input, upon interrupt, or when questions run out,
qui z reports a score and terminates.

The -t flag specifies tutorial mode, where missed questions
are repeated later, and material is gradually introduced as you
learn.

The - i flag causes the named file to be substituted for the default
index file. The lines of these files have the syntax:

line = category newline I category: line
category= alternate I category I alternate
al ternate= empty I alternate primary
primary= character I [category [I option
option = {category}

The first category on each line of an index file names an informa­
tion file. The remaining categories specify the order and contents
of the data in each line of the information file. Information files
have the same syntax. Backslash \ is used as with sh(l) to quote
syntactically significant characters or to insert transparent new­
lines into a line. When either a question or its answer is empty,
qui z will refrain from asking it.

FILES
/usr/games/quiz
/usr/games/lib/quiz/index
/usr/games/lib/quiz/*

BUGS
The construct

a I ab

doesn't work in an information file. Use a {b}.

February, 1990
Revision C

1

rain(6) rain(6)

NAME
rain - animated raindrops display

SYNOPSIS
/usr/games/rain

DESCRIPTION
The display of rain is modeled after the V AXNMS program of
the same name. The terminal has to be set for 9600 baud to obtain
the proper effect

As with all programs that use termcap, the TERM environment
variable must be set (and exported) to the type of the terminal be­
ing used.

FILES
/usr/games/rain
/etc/termcap

February, 1990
RevisionC

robots(6) robots(6)

NAME
robots - escape from the robots

SYNOPSIS
/usr/games/robots

DESCRIPTION
The object of the game robot s is to move around inside of the
box on the screen without getting eaten by the robots chasing you
and without running into anything.

If a robot runs into another robot while chasing you, they crash
and leave a junk heap.

You start out with 10 robots worth 10 points each. If you defeat
all of them, you get 20 robots worth 20 points each. Then 30, etc.
Until you get eaten!

The game keeps track of the top ten scores and prints them at the
end of the game.

The valid commands are described on the screen.

FILES
/usr/games/robots

February, 1990
Revision C

1

trek(6) trek(6)

NAME
trek - trekkie game

SYNOPSIS
/usr / games/trek [[-a]file]

DESCRIPTION
trek is a game of space glory and war. Below is a summary of
commands. For complete documentation, see Trek by Eric All­
man.

If a filename is given, a log of the game is written onto that file. If
the -a flag is given before the filename, that file is appended to,
not truncated.

The game will ask you what length game you would like. Valid
responses are short, medium, and long. You may also type­
restart which restarts a previously saved game. You will then
be prompted for the skill, to which you must respond novice,
fair, good, expert, commodore, or impossible. You
should normally start out with a novice and work up.

In general, throughout the game, if you forget what is appropriate
the game will tell you what it expects if you just type in a question
mark.

COMMAND SUMMARY

1

abandon
cloak up/down
computer request; ...
destruct
help
lrscan
phasers automatic amount
phasers manual amtl course1 spread1 ...
torpedo course [yes] angle/no
r am course distance
shell
srscan [yes/no]
status
undock
warp warp_factor

capture

damages
dock
impulse course distance
move course distance

rest time
shields up/down

terminate yes/no
visual course

February, 1990
Revision C

trek(6)

FILES
/usr/games/trek

February, 1990
Revision C

trek(6)

2

ttt(6) ttt(6)

NAME
ttt, cubic - tic-tac-toe

SYNOPSIS
/usr/games/ttt

/usr/games/cubic

DESCRIPTION
t t t is the X and 0 game popular in the first grade. This is a
learning program that never makes the same mistake twice.

Although it learns. it learns slowly. It must lose nearly 80 games
to completely know the game.

cubic plays three-dimensional tic-tac-toe on a 4x4x4 board.
Moves are specified as a sequence of three coordinate numbers in
the range 1-4.

FILES

1

/usr/games/ttt
/usr/games/ttt.k
/usr/games/cubic

February, 1990
RevisionC

twinkle(6) twinkle(6)

NAME
twinkle - twinkle stars on the screen

SYNOPSIS
/usr/games/twinkle [-] [+] [s save]] [density1 [density2]]

DESCRIPTION
twinkle causes a specified density of "stars" to twinkle on the
screen.

FLAG OPTIONS
The following flag options are available;

Print out the present screen density (the percentage of the
screen that will be filled with stars) in the lower-left comer of
the screen. This number changes as stars go on and off.

+ Do not "randomize" before starting. The screen starts out
completely blank and stars are added, bit by bit. In this case,
the density rises beyond the specified density, then falls to the
required percentage.

s Save binary density on file save, in case you want to see the
density curve that a particular density specification produced
during the life of the show.

density
If density is not specified, density is .5 (50% of the screen is
filled with stars).
If only densityl is given, density is lIdensityl
If both densityl and density2 are given, density is the resul­
tant of densityl/(densityl +density2).

EXAMPLES
The command

twinkle -+ 2 6

would start from a blank screen and twinkle stars to a final density
of 2/8, or 25%. The densities would be shown in the lower-left
corner, as a three-place decimal.

FILES
/usr/games/twinkle

February, 1990
Revision C

1

worm(6) worm(6)

NAME
worm - play the growing worm game

SYNOPSIS
/usr/games/worm [size]

DESCRIPTION
In worm, you are a little worm, your body is the os on the screen,
and your head is the @, You move with the keys h, j, k, and 1
keys. If you don't press any keys, you continue in the direction
you last moved. The uppercase H, J, K, and L keys move you as
if you had pressed several (9 for HL and 5 for JK) of the
corresponding lowercase key (unless you run into a digit, then it
stops).

On the screen you will see a digit; if your worm eats the digit, it
will grow longer. The actual amount by which the worm will
grow longer depends upon which digit was eaten. The object of
the game is to see how long you can make the worm grow.

The game ends when the worm runs into either the sides of the
screen or itself. The current score (how much the worm has
grown) is kept in the upper left comer of the screen.

The optional argument, if present, is the initial length of the worm.

FILES
/usr/games/worm

BUGS

1

If the initial length of the worm is set to less than one or more than
75, various strange things happen.

February, 1990
Revision C

worms (6) worms(6)

NAME
worms - animate worms on a display terminal

SYNOPSIS
/usr/games/worms [-field] [-length n] [-number n]
[-trail]

DESCRIPTION
-field makes a field for the worm(s) to eat; -trail causes
each worm to leave a trail behind it The rest is easily understood.

FILES
/usr/games/worms
/etc/termcap

DIAGNOSTICS
Invalid length

Value not in range 2 <= length <= 1024

Invalid number of worms
Value not in range 1 <= number <= 40

TERM: parameter not set
The TERM environment variable is not defined. To fix things,
run the commands

TERM=terminal-type
export TERM

Unknown terminal type
The terminal type (as determined from the TERM environ­
ment variable) is not defined in / etc/termcap.

Terminal not capable of cursor motion
The terminal is incapable of running this program.

Out of memory
This should never happen.

BUGS
The lower right character position will not be properly updated on
a terminal that wraps at the right margin.

Terminal initialization is not performed.

February, 1990 1
Revision C

wump(6) wump(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
wump plays the game of "Hunt the Wumpus". A Wumpus is a
creature that lives in a cave with several rooms connected by tun­
nels. You wander among the rooms, trying to shoot the Wumpus
with an arrow, meanwhile avoiding being eaten by the Wumpus
and falling into Bottomless Pits. There are also Super Bats which
are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per
line; it will give a more detailed description if you want

This program is based on one described in People's Computer
Company, 2, 2 (November 1973).

FILES
/usr/games/wump

BUGS
It will never replace Adventure.

1 February, 1990
RevisionC

THE APPLE PUBUSHING SYSTEM

This Apple manual was written, edited, and composed
on a desktop publishing system using Apple
Macintosh ® computers and troff running on A!UX.
Proof and fmal pages were created on Apple
LaserWriter~ printers. POSTSCRIPT~, the page­
description language for the LaserWriter, was
developed by Adobe Systems Incorporated.

Text type and display type are Times and Helvetica.
Bullets are ITC Zapf Dingbats~. Some elements, such
as program listings, are set in Apple Courier.

Writers: J. Eric Akin, Mike Elola, George Towner, and
Kathy Wallace

Editor: George Truett
Production Supervisor: Josephine Manuele
Acknowledgments: Lori Falls and Michael Hinkson

Special thanks to Lorraine Aochi, Vicki Brown,
Sharon Everson, Pete Ferrante, Kristi Fredrickson,
Don Gentner, Tim Monroe, Dave Payne, Henry Seltzer,
and John Sovereign

030-0782

